
THE PHELIX CONTROL SYSTEM BASED ON CS-FRAMEWORK 3.0

H. Brand, D. Beck, S. Götte, M. Kugler, GSI, 64291 Darmstadt, Germany

Abstract

The Petawatt High Energy Laser for Ion eXperiments
[1,2], will offer the unique combination of a high current,
high energy (GeV/u) heavy-ion beam with a powerful
laser beam thus providing the opportunity to investigate a
variety of fundamental science issues in the field of
atomic physics, nuclear physics, and plasma physics. The
PHELIX Control System (PCS) is based on the CS
framework [3,4]. About 40 additional classes were
developed for the PCS and about 250 objects are
distributed on 13 PC's publishing about 10000 process
variables. The PCS has been upgraded to CS version 3.0
recently. In CS 3.0 the entire communication layer has
been changed to DIM [5] (Distributed Information
Management), which is a light weight protocol for inter-
process communication based on TCP/IP. The PCS was
redesigned to make use and profit from the concept of
named services. Clients may receive information from a
service (observer pattern) or may send a command to a
server (command pattern). By these means the
implementation of the PCS behaviour with hierarchical
state machines was eased.

CS FRAMEWORK 3.0
CS is a framework that can be used by many

experiments. It is a multi-threaded, event driven, object
oriented and distributed framework with SCADA
functionality based on LabVIEW [6,7] from National
Instruments and DIM. An experiment control system can
be developed by combining the CS framework with
experiment specific add-ons. CS is supported on MS-
Windows, Linux and the real-time OS Pharlab (LabVIEW
RT).

The CS framework provides an object oriented
approach for standard LabVIEW by using template-VI's
to create unique object references and threads and
Functional Global Variables (uninitialized Shift-Registers)
to maintain the object attribute values protected by
semaphores. DIM is used for the local and network
communication layer. The CS framework provides base
classes for GUI's, State Machines or active processes that
can react on events (see Fig. 1). As an example, objects of
BaseProcess class can subscribe to DIM services and
declare commands to ensure a common event data
structure. Objects are instances of such classes and are
created at runtime. Due to the common event mechanism,
objects of BaseProcess or inherited classes can be
dynamically combined to a dedicated distributed control
system like LEGO® bricks.

Figure 1: CS Framework Baseclass Hierarchy

FINITE STATE MACHINE
Many PCS classes inherit from BaseSM class which is

the base class for finite state machines.
Each class that inherited from BaseSM has to overload

an abstract method, which is called from the BaseSM
thread, to implement its behaviour. The current state of an
object is published as a DIM service.

The implementation of the overload method contains a
case structure. Each case corresponds to a unique state
and has the same sequence stucture.

1. Action on Entry: The first step implements all
actions that must be executed on entry of state.

2. Do action: The next step comprises a while loop. It
contains all actions that have to be executed while
remaining in the state. This while loop will be
stopped if a valid state change request is received.
Valid next states can be defined by the class
developer.
A state change can be triggered in two ways.

o Internal: If valid default next state is
specified, the state machine will switch to
it. If the default state is not specified, the
object will remain in the same state and
perform just another loop iteration.

o External: The BaseSM class provides a
method to request a conditional state
change. This method has the following
input parameters: requested state,
condition, list of the next states that are
allowed from the user point of view.

3. Action on Exit: Finally all actions have to be
implemented that must be executed on exit of state.

PHELIX COMPONENTS
Fig. 2 shows the schematics of the fs-option of

PHELIX which will deliver pulses of up to 500 J in 500
fs. The ns front-end will generate pulses of up to 10 ns

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPB01

Status Reports

163

and will allow a maximum energy of up to 1 kJ. The
maximum energy is limited by the damage threshold of
the FR-5 glass of the Faraday isolator. With the booster
amplifier (not shown in Fig. 1), the energy may be
increased to 4 kJ for 10-ns pulses.

Figure 2: Schematics of PHELIX.

PHELIX CONTROL SYSTEM
ARCHITECTURE

The PHELIX Control System follows the architecture

of the laser system and is composed hierarchically of
many subsystems and modules as shown in Fig. 3. The
initial laser pulse is produced in the ns- or fs-Frontend
laser systems. It will then be amplified in the Preamplifier
(PreAmp) and Mainamplifier (MainAmp). There are two
Pulsed Power systems (PP PreAmp and PP MainAmp)
that provide the pump energy. Each subsystem controls
devices, arbitrary function generators, power supplies,
motors etc., and diagnostics like oscilloscopes, cameras,
power meters etc. Such subsystems are executed on their
own local control nodes. Other subsystems like Timing or
Data Acquisition are running on separate nodes since they
have to control or readout several other subsystems.

PILS (PHELIX InterLock System), Beamline and
Sequencer integrate all other subsystems to one global
PHELIX Control system each focusing on different
aspects.

The PHELIX control system uses the common three
layer approach, device, application and operation layer. A
central part of the PCS is modelled by using state charts.

Many PHELIX classes have inherited from all three
active base classes, BaseProcess, BaseSM and BaseGUI.
Most PCS objects have their own graphical user interface
(GUI) for local operation. But the GUI event loop does
not perform requested actions directly, but sends itself an
event to be processed by its BaseProcess event loop
thread asynchronously. By this means blocking of the
GUI event loop is avoided and all user actions can also be
dispatched programmatically from other objects, e.g.
higher level application layer objects like state machines
or sequencers. Their states e.g. remote controlled or local
operation are implemented as state machines. GUI
controls are disabled when an object becomes remote
controlled and enabled again when it becomes released.

Objects typically subscribe to DIM services of other
application and device layer instances. From this data
they calculate their internal state or request state changes.

Figure 3: This figure illustrates the components of the
PCS and their dependencies.

Device Layer
Each hardware device type is represented in the

software by a class and each device by an object. PCS
device objects are communicating with their devices
directly via field bus (RS 232/485, GPIB, TCP/IP socket)
or via OPC. They publish the current device state via
DIM and wait for commands to be sent to the device.
Device objects are passive that means they are not acting
on their own.

Application Layer
Many PCS application layer objects are aggregations

that control elementary devices or other application layer
objects. Their behaviour is also defined by state machines
as described before.

• Such an object requests the remote control of child
objects. It creates them, if they do not already
exist.

• The local GUI of a child object becomes disabled,
so the parent object has exclusive control.

• An application layer object can be operated locally
by using its GUI or controlled remotely by higher
level application layer objects or from the
operation layer.

• When the parent object becomes destroyed its child
objects are set to local control and will be released
by the parent object.

Such application layer objects have typically also
inherited from BaseProcess and

Operation Layer
The PHELIX Sequencer is an example for an object in

the operation layer. It provides a GUI that enables the
PHELIX operator to prepare and deliver a PHELIX laser
shot to an experiment. The sequencer requests the remote

TPPB01 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Status Reports

164

control of objects in the application layer. Their local
GUIs become disabled to avoid concurrent modifications.
The sequencer then monitors the status information and
sends configuration commands or state change requests to
objects in the application layer.

CONCLUSION
The PHELIX Control System has been successfully

ported to CS Version 3.0 and was redesigned with respect
to new features of the DIM communication layer,
especially the Publisher – Subscriber pattern:

• All objects publish their status via DIM.
Dependent objects subscribe to these services and
react on value changes.

• The Publisher – Subscriber mechanism makes it
easy to trigger transitions of finite state machines.

• A central part of the PCS has been designed and
implemented by using hierarchical finite state
machines.

• It provides stable and continuous operation with
about 250 objects distributed on 13 PC's publishing
about 10000 process variables.

• A first Laser-Shot with design energy of 500J was
performed in March 2007

REFERENCES
[1] PHELIX Progress Report , GSI Report 2006, PLPY-

PHELIX-15, p. 291, ISSN 0174-0814
[2] http://www.gsi.de/forschung/phelix/index_e.html
[3] D. Beck et al., Nucl. Instr. Meth. A 527 (2004) 567-

579
[4] http://wiki.gsi.de/cgi-

bin/view/CSframework/WebHome
[5] http://www.cern.ch/dim
[6] R. Jamal and H.Pichlik, “LabVIEW Applications and

Solutions” (1999) Prentice Hall.
[7] http://www.ni.com/labview

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA TPPB01

Status Reports

165

