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Abstract 

The Petawatt High Energy Laser for Ion eXperiments 
[1,2], will offer the unique combination of a high current, 
high energy (GeV/u) heavy-ion beam with a powerful 
laser beam thus providing the opportunity to investigate a 
variety of fundamental science issues in the field of 
atomic physics, nuclear physics, and plasma physics. The 
PHELIX Control System (PCS) is based on the CS 
framework [3,4]. About 40 additional classes were 
developed for the PCS and about 250 objects are 
distributed on 13 PC's publishing about 10000 process 
variables. The PCS has been upgraded to CS version 3.0 
recently. In CS 3.0 the entire communication layer has 
been changed to DIM [5] (Distributed Information 
Management), which is a light weight protocol for inter-
process communication based on TCP/IP. The PCS was 
redesigned to make use and profit from the concept of 
named services. Clients may receive information from a 
service (observer pattern) or may send a command to a 
server (command pattern). By these means the 
implementation of the PCS behaviour with hierarchical 
state machines was eased. 

CS FRAMEWORK 3.0 
CS is a framework that can be used by many 

experiments. It is a multi-threaded, event driven, object 
oriented and distributed framework with SCADA 
functionality based on LabVIEW [6,7] from National 
Instruments and DIM. An experiment control system can 
be developed by combining the CS framework with 
experiment specific add-ons. CS is supported on MS-
Windows, Linux and the real-time OS Pharlab (LabVIEW 
RT).  

The CS framework provides an object oriented 
approach for standard LabVIEW by using template-VI's 
to create unique object references and threads and 
Functional Global Variables (uninitialized Shift-Registers) 
to maintain the object attribute values protected by 
semaphores. DIM is used for the local and network 
communication layer. The CS framework provides base 
classes for GUI's, State Machines or active processes that 
can react on events (see Fig. 1). As an example, objects of 
BaseProcess class can subscribe to DIM services and 
declare commands to ensure a common event data 
structure. Objects are instances of such classes and are 
created at runtime. Due to the common event mechanism, 
objects of BaseProcess or inherited classes can be 
dynamically combined to a dedicated distributed control 
system like LEGO® bricks. 

 
Figure 1: CS Framework Baseclass Hierarchy 

FINITE STATE MACHINE 
Many PCS classes inherit from BaseSM class which is 

the base class for finite state machines. 
Each class that inherited from BaseSM has to overload 

an abstract method, which is called from the BaseSM 
thread, to implement its behaviour. The current state of an 
object is published as a DIM service. 

The implementation of the overload method contains a 
case structure. Each case corresponds to a unique state 
and has the same sequence stucture. 

1. Action on Entry: The first step implements all 
actions that must be executed on entry of state. 

2. Do action: The next step comprises a while loop. It 
contains all actions that have to be executed while 
remaining in the state. This while loop will be 
stopped if a valid state change request is received. 
Valid next states can be defined by the class 
developer. 
A state change can be triggered in two ways. 

o Internal: If valid default next state is 
specified, the state machine will switch to 
it. If the default state is not specified, the 
object will remain in the same state and 
perform just another loop iteration. 

o External: The BaseSM class provides a 
method to request a conditional state 
change. This method has the following 
input parameters: requested state, 
condition, list of the next states that are 
allowed from the user point of view. 

3. Action on Exit: Finally all actions have to be 
implemented that must be executed on exit of state. 

PHELIX COMPONENTS 
Fig. 2 shows the schematics of the fs-option of 

PHELIX which will deliver pulses of up to 500 J in 500 
fs. The ns front-end will generate pulses of up to 10 ns 
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and will allow a maximum energy of up to 1 kJ. The 
maximum energy is limited by the damage threshold of 
the FR-5 glass of the Faraday isolator. With the booster 
amplifier (not shown in Fig. 1), the energy may be 
increased to 4 kJ for 10-ns pulses. 

 
Figure 2: Schematics of PHELIX. 

PHELIX CONTROL SYSTEM 
ARCHITECTURE 

 
The PHELIX Control System follows the architecture 

of the laser system and is composed hierarchically of 
many subsystems and modules as shown in Fig. 3. The 
initial laser pulse is produced in the ns- or fs-Frontend 
laser systems. It will then be amplified in the Preamplifier 
(PreAmp) and Mainamplifier (MainAmp). There are two 
Pulsed Power systems (PP PreAmp and PP MainAmp) 
that provide the pump energy. Each subsystem controls 
devices, arbitrary function generators, power supplies, 
motors etc., and diagnostics like oscilloscopes, cameras, 
power meters etc. Such subsystems are executed on their 
own local control nodes. Other subsystems like Timing or 
Data Acquisition are running on separate nodes since they 
have to control or readout several other subsystems. 

PILS (PHELIX InterLock System), Beamline and 
Sequencer integrate all other subsystems to one global 
PHELIX Control system each focusing on different 
aspects.  

The PHELIX control system uses the common three 
layer approach, device, application and operation layer. A 
central part of the PCS is modelled by using state charts. 

Many PHELIX classes have inherited from all three 
active base classes, BaseProcess, BaseSM and BaseGUI. 
Most PCS objects have their own graphical user interface 
(GUI) for local operation. But the GUI event loop does 
not perform requested actions directly, but sends itself an 
event to be processed by its BaseProcess event loop 
thread asynchronously. By this means blocking of the 
GUI event loop is avoided and all user actions can also be 
dispatched programmatically from other objects, e.g. 
higher level application layer objects like state machines 
or sequencers. Their states e.g. remote controlled or local 
operation are implemented as state machines. GUI 
controls are disabled when an object becomes remote 
controlled and enabled again when it becomes released. 

Objects typically subscribe to DIM services of other 
application and device layer instances. From this data 
they calculate their internal state or request state changes. 

 

 
Figure 3: This figure illustrates the components of the 
PCS and their dependencies. 

Device Layer 
Each hardware device type is represented in the 

software by a class and each device by an object. PCS 
device objects are communicating with their devices 
directly via field bus (RS 232/485, GPIB, TCP/IP socket) 
or via OPC. They publish the current device state via 
DIM and wait for commands to be sent to the device. 
Device objects are passive that means they are not acting 
on their own. 

Application Layer 
Many PCS application layer objects are aggregations 

that control elementary devices or other application layer 
objects. Their behaviour is also defined by state machines 
as described before.  

• Such an object requests the remote control of child 
objects. It creates them, if they do not already 
exist. 

• The local GUI of a child object becomes disabled, 
so the parent object has exclusive control. 

• An application layer object can be operated locally 
by using its GUI or controlled remotely by higher 
level application layer objects or from the 
operation layer. 

• When the parent object becomes destroyed its child 
objects are set to local control and will be released 
by the parent object. 

Such application layer objects have typically also 
inherited from BaseProcess and 

Operation Layer 
The PHELIX Sequencer is an example for an object in 

the operation layer. It provides a GUI that enables the 
PHELIX operator to prepare and deliver a PHELIX laser 
shot to an experiment. The sequencer requests the remote 
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control of objects in the application layer. Their local 
GUIs become disabled to avoid concurrent modifications. 
The sequencer then monitors the status information and 
sends configuration commands or state change requests to 
objects in the application layer. 

CONCLUSION 
The PHELIX Control System has been successfully 

ported to CS Version 3.0 and was redesigned with respect 
to new features of the DIM communication layer, 
especially the Publisher – Subscriber pattern:  

• All objects publish their status via DIM. 
Dependent objects subscribe to these services and 
react on value changes. 

• The Publisher – Subscriber mechanism makes it 
easy to trigger transitions of finite state machines. 

• A central part of the PCS has been designed and 
implemented by using hierarchical finite state 
machines. 

• It provides stable and continuous operation with 
about 250 objects distributed on 13 PC's publishing 
about 10000 process variables. 

• A first Laser-Shot with design energy of 500J was 
performed in March 2007 
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