Trends in Software
_ for |
~ large astronomy projects

G.Chiozzi, A.Wallander — ESO, Germany

G Schumacher — National Optqcal Astronomy Observatorles La
Serena, Chile

D. Silva — AURA/T'hirty Meter Telescope, Pasadena, CA

ALMA _ (GEMINI .

S
S

Aspects analyzed -

e Timeline
e Challenges
e Architecture
e Frameworks
- o Development'methedelogl
e Technological implementation
e HW platforms
e Operating systems
e Programming languages
e User Interfaces.

1995
2000
2005

- 2010

2015

2020

VLT/VLTI

L]

Gemini N/S

ey

Challenges of new projects

WARNING |

|{CHALLENGES|

tributed control loops

e Fault detection, isolation and recovery
(E-ELT M1: 1000 segments with actuators and
Sensors)

e Operational eff|C|ency
(TMT requirement: on target in <5 minutes).

Architecture

All major facilities in operation: three- tler architecture
e High-level coordination systems -
e Low-level real time control computers (LCUS)

e Devices with limited degree of intelligence

Fairly independent sulb-: . slow correction
offloading

Wave front control (adaptiveroptics and interferometry)
introduces new re
quwemen S.
e Distributed real time synchronlzatlon and feedback
" e Significant physical separation

Systems of systems, often heterogeneous
LCUs role is eroded on: both sides.

" Frameworks

L= . " | -
A uniform software framework has - Frameworks adopted:

a value in simplifying development . Keck and Gemini: EPICS, RTC
_'and maintenance » ESO Paranal and La Silla:

Isolate application from | VLT CCS

middleware providing a layer: of AL MA and other projects: ACS

common SEerviCes TSTCS

5
5

Separation betweel A 0
functional architecture now. iy
formally adopted. -

- Component based architectures

3
C @,
- »

‘Common services:
e Connection

emerged as particularly useful in * Event
distributed systems . . *Command
Sharing the technical framework Logging
would allow sharing functional e Persistent store
components .

* Error handling

Development methodologies and
modeling techniques

e Our constraints: .
e Multi-year observator)'/ design periods

e Review structure and process imposed by funding agencies is
oriented to a waterfall approach

e Floating requirements

e Methodology eveluti '
e Mid ’80s/ mid “90s: Strtictlred programming

e Mid '90s/ beginning 20 00: Object Oriented and UML

(pragmatic approach)

- @ Now: SysML, agile methodologies:
- o Requirement management and traceability

o Integration in a coherent system model as seen from dlfferent
disciplines . '

Hardware platforms:

In most existing observatories:
e High level coordination — general purpose WS
e Real time — Local Control Units (often VME)
“e Devices attached directly to VMEs

e High level coordination —
e (Soft) Real time — - 4
e Intelligent devices on ETMU%trlal buses (CAN)
e (Hard) Real time — DSPs and FPGAs

Clusters for raw computing power
Virtualization under evaluation. Trend for the future’? |

Operating systems

e The 1990s

- e And no

Proprietary UNIX

Linux
Real Ti

Questlonlng Linux
Solaris re-emerging

" -

Open source to stay (Solarls)

MsWindows (and OPC)?

—>

Other players? —

e Proprietary RTOS (VxWorks domlnatlng)
e The turn of the century:

urce

* OS neutrality

* Real time Java

« QNX R,

e LabVIEW and LabView-RT
* PLCs

* FPGAs and DSPs .

Programming Languages

*

“ £ i s o Language
The core language(s): C
e Mid '80s/ mid ‘90s: C domination C++
e Mid '90s/ beginning 2000: C+- Capfast
takeover . TelTk
e Now: Ja Others
decline, ;

Total

The glue: from TcI/Tmand over

LabVIEW'’s role growing

We have to cope with:
e Different languages for different purposes
e Highly distributed systems .

Keck VLT
251050 246738
0 84400
130116 0
9408 81657

- 118144 64136

508718 476931

10

User Interface

A challenging area. Growmg ¢
complexity. :

We are comfortable with
Engineering Ul development

We do not have skills for good
Operator Uls .

Java and Tcl/Tk the
used.

GUI builders are not adequa
Rapid prototyping: necessary,
but with a dark side -

We cannot afford specialized
Ul development teams .

11

Conclusion

New facilities are NOT scaled up versions of existing ones.

Paradigm changes may be required

Analysis of control system evolution in observatories is
on-going

We aim at: _
e Sharing lessons learned

e |dentifying areas for QOfOW

@ Sharing architectural elements and infrastructure

Cooperation is made easier by international
collaborations and the open source movement .

12

~ Questions?

" .
The authors represent just a subset of the projects in astronomy.
Many more colleagues in the astronomical observatory
community have given their ideas and time as we have developed
this paper. :

ESO www.eso.org — Email: gchiozzi@eso.org
W.M.Keck http://www.keckobservatory.org
Observatory
Gemini http://www.gemini.edu
Observatory
ALMA http://www.alma.cl
ATST http://atst.nso.edu
LSST http://www.lsst.org
Thirty Meter http://www.tmt.org
Telescope

13

http://www.eso.org/
mailto:gchiozzi@eso.org

	Trends in Software �for �large astronomy projects
	Aspects analyzed
	Challenges of new projects
	Architecture�
	Frameworks
	Development methodologies and modeling techniques
	Hardware platforms
	Operating systems�
	Programming Languages
	User Interface
	Conclusion
	Questions?

