
TRENDS IN SOFTWARE FOR LARGE ASTRONOMY PROJECTS

G.Chiozzi*, A.Wallander, ESO, Garching, Germany
K.Gillies, Gemini Observatory, La Serena, Chile

B.Goodrich, S.Wampler, National Solar Observatory, Tucson, AZ, USA
J.Johnson, K.McCann, W.M. Keck Observatory, Kamuela, Hawaii, USA

G.Schumacher, National Optical Astronomy Observatories, La Serena, Chile
D.Silva, AURA/Thirty Meter Telescope, Pasadena/CA, USA

Abstract
Current 8-10m ground-based telescopes require

complex real-time control systems that are large,
distributed, fault tolerant, integrated and heterogeneous.
New challenges on the horizon (laser guide star, adaptive
optics, 30–40m class telescopes) will bring increased
complexity, where requirements cannot be cleanly
isolated due to component coupling within the control and
acquisition chain. Moreover, the high cost of observing
time imposes challenging requirements on system
reliability and observing efficiency. New, more complex
facilities are not simply scaled up versions of current
facilities – paradigm changes may be required.

Here, responses by the astronomical community to
these new software challenges are discussed. Our focus is
the evolution of control system architecture and software
infrastructure from the current generation of facilities to
the next. Although we focus on control systems, clearly
this is just one of the several subsystems integrated within
the entire observatory end-to-end operation.

INTRODUCTION
Over the last 10 years, software engineers at the current

generation of 8–10m telescopes have adapted to
significant changes in requirements and technologies
relative to their predecessor 3–4m class telescopes[1].
With segmented and large thin mirrors came the need for
active mirror control. Even more significant was the
introduction of adaptive optics, laser guide stars and
optical interferometry. Along with increased control
model complexity came higher demands on bandwidth,
data storage, and data processing. The primary challenge
has been to incorporate such new technology and
requirements while achieving acceptable system
reliability and observational efficiency.

At present, a new generation of facilities is on the
horizon, from a 4m class advanced technology solar
telescope to an 8m class wide-field survey telescope to
one or more 30 – 40m class telescopes. Each of these new
facilities inherits the software challenges of the last
generation while adding new complexity of their own.

In this paper we will analyze and compare various
aspects of current telescope control systems, with an

emphasis on temporal evolution. From the many areas
that could be discussed, we focus on challenges and
evolution in the areas of system architecture, development
methodology, and technological implementation.

ARCHITECTURE
All major operational telescopes use a familiar three-

tier hierarchical architecture:
1. High-level coordination systems
2. Low-level real-time control computers (LCUs,

local control units).
3. Devices with a limited degree of intelligence

directly connected to hardware
Each system is mostly comprised of fairly independent

subsystems. Sub-system interaction is typically limited to
slow correction offloading from faster to slower
subsystems within a wider operational range.

Wave front control using adaptive optics systems and
optical interferometry dramatically change this simple
fast-to-slow offloading paradigm, since they require real-
time coordination of the feedback among many sensors
distributed throughout one or more telescopes. System
architectures must now deal with real-time devices with
significant physical separations that must be coordinated
in real-time. In the past it was sufficient to use time
tagged commands sent in advance in a few special
situations, but general, system-wide synchronization and
latency minimization are now required.

Techniques can be used to localize command &
control, but this is insufficient when the devices to be
controlled are far away from one another and fast,
deterministic synchronization is needed. In that case,
control processors need to be close to the mechanisms and
connected to other controllers by a deterministic network
or industrial bus. In many cases, observatories have
evolved into systems of systems, where different lineages
of subsystems must function together in a heterogeneous
fashion, possibly sharing infrastructure and needing to
share common models and communication solutions.

In parallel to these developments, LCUs once necessary
to perform both soft and hard real-time tasks and used as
general purpose I/O units to connect to field HW (sensors
and actuators) are being replaced. Nowadays, soft real-
time tasks can be performed directly by the coordination
workstations while the HW devices are much more
autonomous/intelligent and can normally be connected

*gchiozzi@eso.org

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOAB03

Status Reports

13

directly to an Ethernet network or other standard
communication buses.

FRAMEWORKS
The value of providing a uniform software framework

to simplify the development and maintenance of complex
control systems is obvious[2]. EPICS, adopted by Keck
and Gemini, has been one of the first solutions thought to
facilitate the creation of distributed soft real-time control
systems. EPICS deals with many of the technical aspects
of the system providing a common programming
environment and common services.

Recently, this concept has been more formally defined
and implemented through the separation of the functional
and the technical aspects of large, distributed software
systems. The so-called technical framework defines the
software elements that are independent of task-specific
components, which in turn are layered on top of the
technical framework.

In the past, the technical framework was limited to
common libraries and sets of guidelines on how to access
and use those libraries. The advent of object-oriented
programming techniques has made it possible to extend
the scope of the technical framework, effectively
providing automatic implementation of many operations
previously covered only by guidelines. This allows
software developers to focus more on the task-specific
implementation.

Observatories such as ALMA and ATST as well as
newer subsystems of current observatories have adopted a
component-container model[3]. SW applications consist
of independent components that communicate with each
other using a number of integrated services. Typical
technical aspects of system integration, like distribution,
deployment and location of other components, are hidden
to the developers. All these technical issues are the
responsibility of containers provided by the framework:
they are the ecosystem where components run and find
convenient access to all services they might need.

A component-based architecture is particularly useful
in distributed and heterogeneous systems typical for our
observatories, since it facilitates the practical partitioning
of implementation into manageable units. However, for
this strategy to be successful, the underlying technical
infrastructure must ensure that the right information is
delivered to the right place at the right time. The software
layer involved in this information exchange is commonly
known as communication middleware and supports the
implementation of the connectivity and interoperability
needs of the distributed applications.

However, it is important to isolate the application
software from the underlying middleware, given the need
to migrate to different technologies during the lifetime of
a project. Examples of this software layer include the
Keck Task Library (KTL)[4] and the ALMA Container
Services[5]. These provide language independent

solutions allowing a common API to be used for control
coordination and monitoring of the observatory.

Common services adopted by the ALMA, ATST[6] and
LSST[7] projects include:
• Connection: locate and connect to other applications

in a distributed environment
• Event: high-performance asynchronous message

handling
• Command: client/service communication for

application control.
• Logging: telemetry capture as well as collection,

recording, distribution and analyzes of messages.
• Persistent Store: hold system configuration

information, calibration data, performance data, etc.
• Error Handling: monitor for improper behavior,

report error conditions, and supports recovery
operations

Through the use of standards (e.g. NVO, XML,
CORBA), hopefully current technical frameworks in use
at different observatories will integrate better and possibly
even converge in the future. Observatories that share the
same technical framework API will be able to easily share
functional components. Such a convergence needs to be
done carefully, however, as the nature of these technical
frameworks is still in flux.

DEVELOPING METHODOLOGIES AND
MODELING TECHNIQUES

All recent observatory projects tried to leverage
existing, off-the-shelf software technology to lower
overall development and maintenance costs. Of course, as
development methodologies and modelling techniques
have evolved, so has their use in observatory projects.

The problem of creating and describing a software
design and verifying that it will satisfy project science
requirements is extremely difficult. This is exacerbated by
software development projects that are coupled to multi-
year observatory design periods with multiple
requirement and milestone reviews. We have seen that
many traditional project management and engineering
approaches do not work well with software.

The projects of the mid-90s were developed with the
modeling tools and processes of that time. The imposed
review structure lead to a waterfall development process
to a greater or lesser degree. Object-oriented approaches
were not widely adopted. For example, the control
systems of Keck, Gemini, and VLT are largely C code,
designed using structured programming methodologies
such as Ward/Mellor.

New projects within these observatories, as well as new
observatory projects such as ALMA, SOAR, and ATST,
more fully embraced object-oriented programming and
UML for design and modeling. The extent of UML use
varies but is generally limited to what is needed to explain
the software in a common sense approach. No project has
yet embraced the complete UML development process.

MOAB03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Status Reports

14

Naturally, the most recent projects are experimenting
with the most recent approaches. For example, both E-
ELT and LSST are working with SysML (Systems
Modeling Language) as a modeling approach that extends
the ideas of UML to the entire system. SysML addresses
two aspects that are particularly relevant for us:

• Requirement capture, management and
traceability: the inability to handle changing
requirements often leads to a crisis during the
integration of sub-systems provided by different
groups or vendors. Moreover, the sheer number of
requirements is increasing quickly as a function of
project complexity. Many of us share the
conclusion that rigidly planned approaches simply
do not work well in our domain and that new, more
agile approaches are needed.

• Integration in a single, coherent, global system
model, as seen from the point of view of different
engineering disciplines (software, electronics,
mechanics, optics and so on): software is the glue
between all observatory sub-systems. In order to be
able to coordinate the various parts, we need to
understand the interfaces and the functional
relationships.

Large-scale software development in the commercial
world faces similar challenges, from which a variety of
new tools and processes have arisen. Agile processes such
as Scrum are highly relevant to the current problems of
telescope and astronomy software development. Several
of our projects (Gemini, ALMA) have successfully used
iterative and agile ideas to put software releases in the
hands of users quickly so they can provide feedback into
subsequent releases.

The programmatic challenge is to integrate an agile
software development approach with the mandated
waterfall approach of funding agencies. In principle, this
can be accomplished through education and positive
experiences. It is still too early to measure the
programmatic success of this approach.

TECHNICAL ASPECTS

Hardware platforms
It is common to assert that hardware choice is driven by

system architecture, but pragmatically it is often available
hardware capability that dictates system architecture. In
most operating observatories:

• High-level coordination is performed by general
purpose workstations.

• Real-time tasks handled by local control units
(LCUs), often VME-based.

• Devices (motor controllers, sensors, actuators) are
directly attached to the VME computers using
appropriate I/O interfaces.

Today many options are available in terms of cost and
performance at all three levels.

On the upper level, high-end workstations have been
replaced by standard personal computers, with a
significant reduction in purchase cost. However, the
tremendous pace in personal computer and component
evolution makes staged purchases and upgrades
extremely complicated because it is often impossible to
find compatible HW after just a few months.

The soft real-time tasks once performed by the LCUs
can now be handled by personal computers and
(eventually) real-time extensions of the general purpose
operating systems.

Intelligent devices, interconnected directly via Ethernet
or an industrial bus like CAN, can now handle many
localized hard real-time tasks. Furthermore, I/O data
acquisition functions are being handled by distributed
field point units rather than directly by an LCU . Very
high performance real-time tasks (such as detector control
or adaptive optics system control) are being off-loaded to
DSP and FPGA based systems.

The implementation of fast distributed control loops to
allow wave front control requires deterministic
connections between the devices. At present, the most
demanding systems use highly specialized solutions (for
example both VLTI and Keck Interferometer use
reflective memory technology). However, we foresee that
generalized real-time and deterministic Ethernet or
industrial buses will be widely used in observatories
currently under development.

In specific situations, concentrated, raw computing
power is needed. The ALMA interferometer requirement
to correlate thousands of baselines per second is just one
example. Such problems are very well suited for clusters
and multi-core/CPU farms where latency and network
delay are not a problem.

In parallel, solutions with high reliability and low
lifecycle cost are highly desirable. A very interesting
technology under evaluation for systems using large
numbers of workstations (like the VLT) is virtualization.
Using virtualization allows physical hardware to be de-
coupled from the logical machine where the software is
run. This has a number of advantages: deployment
procedures are simplified, virtual hardware shields us
from changes in real hardware simplifying upgrade
strategies, and redundancy and hot swapping are handled
by the virtualization platform as well as network
reconfiguration.

Operating systems
Almost all control systems for observatories developed

in the 1990s run high-level coordination software on top
of a proprietary UNIX operating system, like Solaris or
HP-UX. The real-time systems are based on a proprietary
real-time operating system, commonly VxWorks.

In the last decade, open source solutions, especially
Linux derivatives, have gained prominence at the high
level. For example, the VLT has ported the complete
control system to Linux and many projects are based on

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOAB03

Status Reports

15

this operating system. However, interest in Linux as a
general solution has receded recently because total
ownership cost relative to proprietary OSs has not
declined as much as expected. Linux is now seen as one
possibility among several that need to be evaluated for
specific deployment decisions. Moreover, Solaris is re-
emerging as a strong contender thanks to its x86 support
and recent conversion to an open source product.

Interestingly, MS Windows does not play a major role
in our observatory control systems, even though it is now
widely used in industrial control applications and there is
now a trend for contractors to supply Windows based
solutions, with the OLE for Process Control (OPC)
standard allowing different vendors to interoperate well.
Only a few projects like the Discovery Channel Telescope
are committed to the Windows platform.

In any case, the increasing role played in the upper
application layers by Java and other high-level
programming languages, which can enable effective
independence from the underlying OS, can reduce the
impact of OS choice.

In the arena of real-time operating systems, VxWorks
and various flavors of Real-Time Linux play a major role,
incarnating the usual advantages and disadvantages of the
commercial versus free solutions. New (at least for us)
solutions on the horizon include:

• Real-time Java and LabVIEW-RT solutions are
extending their area of application and QNX is
moving towards open source distributions.

• PLCs, with their proprietary simple OS and
programming languages, are more often used to
control commercial-off-the-shelf equipment

• FPGAs and DSPs are necessary for high
performance requirements and bring their own
specific development environments.

Programming languages
The main programming language used for the

development of control applications between mid-80s and
mid-90s was C. This was certainly true for the Keck,
VLT, and Gemini observatories. Looking at the core
telescope control functionalities (i.e. mount, dome, point
and track, tip-tilt, chop, field rotation, mirror figures and
alignment, interface and sequencing control), we can
compare the application size (source lines of code) and
programming languages actually used. Considering these
projects were developed independently based on different
frameworks/middleware the similarities are striking:

Language Keck VLT
C 251050 246738
C++ 0 84400
Capfast 130116 0
Tcl/Tk 9408 81657
Others 118144 64136

Total 508718 476931

Later projects used C++, particularly in the high-level
coordination role. For example, VLT development started
with C and although C is the only language used in the
LCUs, C++ is used in all high-level coordination
applications. In ALMA C++ is used everywhere, down to
the real-time applications.

However, we now see a clear decline in the usage of
C++. On one side, Java is a much better object oriented
language: it provides a huge amount of standard libraries,
it is easier to learn and less error prone. For example, all
ALMA high-level software is now implemented in Java
and we have verified that porting C++ applications to
Java (by the same expert C++ developer) resulted in a
more reliable application. On the other side, C remains
the favorite language for low-level real-time control. The
structural complexity of these applications does not
justify the introduction of an OO language, while at the
same time it is easier to optimize algorithms in C. Not of
least importance, good C developers are available in our
observatories.

The glue between applications and high-level
sequencing is normally implemented using an interpreted
language, such as Tcl/Tk or Python. The emergency of
new interpreted languages is quite rapid and there are
always new options available. Although developing small
applications is in general very easy, we all feel
uncomfortable in allowing the usage of such languages
for critical applications, because of the more limited
possibilities of testing and verifying applications written
with these languages.

Another language in use for control and monitoring
applications is LabVIEW. This graphical programming
development environment based on a dataflow paradigm
is a radical departure from the sequential/deterministic
style of text-based languages. SOAR and LSST project
experience demonstrates that this paradigm adapts well to
applications needed to control astronomical observations,
in that the abstractions and structure of the software are
closer to the real objects being manipulated.

Clearly, we use several programming languages at the
same time, for different purposes. Hence, a major concern
is application interoperability. Many languages allow us
to link and call code from C/C++ libraries, but this is
often not sufficient in highly distributed systems. Here
appropriate middleware can provide the solution. ALMA
for example has chosen CORBA to provide
interoperability between applications and components
written in a set of supported languages and other projects
have done similar choices.

User Interface
User interface design and implementation continues to

be a challenging area. Modern systems and users require
more than just a proliferation of panels with simple
widgets to display status values. Producing a good UI
takes significant effort, which is often under-estimated
and under-budgeted. We have concluded that good UI

MOAB03 Proceedings of ICALEPCS07, Knoxville, Tennessee, USA

Status Reports

16

design and implementation requires a skill set that most
control engineers simply do not possess.

Looking across the observatories, Java and Tcl/Tk are
the two most common technical solutions. Other solutions
such as EPICS DM/EDD, Motif, Python/Tk or Qt are
used to various degrees. In all cases the experience has
been that the tools available are adequate for engineering
panels but are not always sufficient to develop effective
and user friendly end-user UIs.

In terms of technological choice, we see no clear
winner and certainly not one that fits all solutions.
Experience has shown that GUI builders do not provide
good solutions, with virtually no support for the human
engineering aspects and often produce code that is poor in
performance and difficult to maintain. Such builders are
most useful for the development of relatively simple UIs.

While modern tools and languages such as
Python/Tk/Qt, LabVIEW or IDL promote rapid
prototyping, very often these displays tend to be
engineering centric and often bypass good development
practices. Unfortunately, what are essentially prototype
user interfaces often end up in operational environments,
to the detriment of users and maintenance teams.

The human factor is also important in UI development.
In general the UIs are growing more complex and require
more attention with an emphasis on overall workflow and
usability. While many requirements can be established
early via use cases and end-user interviews, it is important
to implement mock-ups and functional prototypes. The
ability to rapid prototype UIs as part of a feedback loop
with users is key to getting the human factor right. If this
loop is too costly it can mean that the system ends up
operating from overly technical engineering interfaces.
Unfortunately, observatory projects often cannot afford to
have an independent UI development team, experienced
in working with end-users.

CHALLENGES OF NEW PROJECTS
Adaptive optics and laser guide star systems under

development for existing facilities as well as the next
generation of extremely large telescopes currently under
development pose new challenges for control systems in
both size and complexity. For example, the E-ELT
incorporates a large 2.5 m deformable mirror with more
than 5000 actuators and close to 1000 mirror segments
controlled in tip, tilt and piston as well as overall shape. It
is estimated that E-ELT will have more than 100 000 I/O
points, a 10-fold increase relative to current 8-10m
telescopes. A large number of control loops, some
distributed, with sampling frequencies up to a few kHz
have to work in unison. Stroke and closed loop bandwidth
must be managed by multi-level off-load schemes.
Further, the large number of actuators and sensors impose
challenging requirements on fault detection, isolation and
recovery.

At the same time, operational efficiency requirements
have become more rigorous. For example, TMT has a
requirement that target acquisition anywhere on the sky
must be completed within five minutes. Ease of use and
operational efficiency need to be considered at every
stage of the software and hardware design and
implementation cycle.

CONCLUSION
This paper summarizes an on-going analysis of control

system evolution in astronomical observatories. From this
analysis, we hope to share lessons learned and identify
areas where greater cooperation across current operational
observatories, as well as facilities under development,
would be beneficial. The move towards open source
paradigms and large international collaborations to share
cost has made such collaboration more practical and
affordable. In particular, we hope to be able to share
technical architectural elements and infrastructure
components more frequently, so that each observatory or
project can focus on specific, science-driven needs.

ACKNOWLEDGMENTS
The authors would like to thank our many colleagues in

the astronomical observatory community who have given
so freely of their ideas and time as we have developed this
paper and our various observatories and projects.

REFERENCES
[1] Wampler, S, and Goodrich, B, "Existing Telescope

Controls", ATST Report RTP-0005, 2002
[2] K.Gillies, J.Dunn, D.Silva. “Defining common

software for the Thirty Meter Telescope,” in Proc. of
the SPIE Vol. 6274 - Astronomical Telescopes and
Instrumentation, Orlando, Florida, USA, 2006.

[3] Chiozzi, G et. al., "Application development using the
ALMA Common Software", Proc. of SPIE Vol. 6274
- Astronomical Telescopes and Instrumentation,
Orlando, Florida, USA, 2006

[4] Lupton, W. F. 2000, “Keck Telescope Control
System”, in ASP Conf. Ser., Vol. 216, Astronomical
Data Analysis Software and Systems IX, eds. N.
Manset, C. Veillet, D. Crabtree (San Francisco:
ASP), 261

[5] Chiozzi, G et. al., "ALMA Common Software ACS
Status and Developments", 10th ICALEPCS Int.
Conf. on Accelerator & Large Experimental Physics
Control Systems, Geneva 2005

[6] Wampler, S, "A middleware neutral common services
infrastructure", 10th ICALEPCS Int. Conf. on
Accelerator & Large Experimental Physics Control
Systems, Geneva 2005.

[7] G. Schumacher, M. Warner, V. Kradbbendam,
"LSST Control System", Proc of SPIE Vol 6274,
2006.

Proceedings of ICALEPCS07, Knoxville, Tennessee, USA MOAB03

Status Reports

17

