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Abstract 
Current 8-10m ground-based telescopes require 

complex real-time control systems that are large, 
distributed, fault tolerant, integrated and heterogeneous. 
New challenges on the horizon (laser guide star, adaptive 
optics, 30–40m class telescopes) will bring increased 
complexity, where requirements cannot be cleanly 
isolated due to component coupling within the control and 
acquisition chain. Moreover, the high cost of observing 
time imposes challenging requirements on system 
reliability and observing efficiency. New, more complex 
facilities are not simply scaled up versions of current 
facilities – paradigm changes may be required.  

Here, responses by the astronomical community to 
these new software challenges are discussed. Our focus is 
the evolution of control system architecture and software 
infrastructure from the current generation of facilities to 
the next. Although we focus on control systems, clearly 
this is just one of the several subsystems integrated within 
the entire observatory end-to-end operation.  

INTRODUCTION 
Over the last 10 years, software engineers at the current 

generation of 8–10m telescopes have adapted to 
significant changes in requirements and technologies 
relative to their predecessor 3–4m class telescopes[1]. 
With segmented and large thin mirrors came the need for 
active mirror control. Even more significant was the 
introduction of adaptive optics, laser guide stars and 
optical interferometry. Along with increased control 
model complexity came higher demands on bandwidth, 
data storage, and data processing. The primary challenge 
has been to incorporate such new technology and 
requirements while achieving acceptable system 
reliability and observational efficiency. 

At present, a new generation of facilities is on the 
horizon, from a 4m class advanced technology solar 
telescope to an 8m class wide-field survey telescope to 
one or more 30 – 40m class telescopes. Each of these new 
facilities inherits the software challenges of the last 
generation while adding new complexity of their own. 

In this paper we will analyze and compare various 
aspects of current telescope control systems, with an 

emphasis on temporal evolution. From the many areas 
that could be discussed, we focus on challenges and 
evolution in the areas of system architecture, development 
methodology, and technological implementation. 

ARCHITECTURE 
All major operational telescopes use a familiar three-

tier hierarchical architecture:  
1. High-level coordination systems  
2. Low-level real-time control computers (LCUs, 

local control units).  
3. Devices with a limited degree of intelligence 

directly connected to hardware  
Each system is mostly comprised of fairly independent 

subsystems. Sub-system interaction is typically limited to 
slow correction offloading from faster to slower 
subsystems within a wider operational range. 

Wave front control using adaptive optics systems and 
optical interferometry dramatically change this simple 
fast-to-slow offloading paradigm, since they require real-
time coordination of the feedback among many sensors 
distributed throughout one or more telescopes. System 
architectures must now deal with real-time devices with 
significant physical separations that must be coordinated 
in real-time. In the past it was sufficient to use time 
tagged commands sent in advance in a few special 
situations, but general, system-wide synchronization and 
latency minimization are now required. 

Techniques can be used to localize command & 
control, but this is insufficient when the devices to be 
controlled are far away from one another and fast, 
deterministic synchronization is needed. In that case, 
control processors need to be close to the mechanisms and 
connected to other controllers by a deterministic network 
or industrial bus. In many cases, observatories have 
evolved into systems of systems, where different lineages 
of subsystems must function together in a heterogeneous 
fashion, possibly sharing infrastructure and needing to 
share common models and communication solutions.  

In parallel to these developments, LCUs once necessary 
to perform both soft and hard real-time tasks and used as 
general purpose I/O units to connect to field HW (sensors 
and actuators) are being replaced. Nowadays, soft real-
time tasks can be performed directly by the coordination 
workstations while the HW devices are much more 
autonomous/intelligent and can normally be connected 
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directly to an Ethernet network or other standard 
communication buses.  

FRAMEWORKS 
The value of providing a uniform software framework 

to simplify the development and maintenance of complex 
control systems is obvious[2]. EPICS, adopted by Keck 
and Gemini, has been one of the first solutions thought to 
facilitate the creation of distributed soft real-time control 
systems. EPICS deals with many of the technical aspects 
of the system providing a common programming 
environment and common services. 

Recently, this concept has been more formally defined 
and implemented through the separation of the functional 
and the technical aspects of large, distributed software 
systems. The so-called technical framework defines the 
software elements that are independent of task-specific 
components, which in turn are layered on top of the 
technical framework. 

In the past, the technical framework was limited to 
common libraries and sets of guidelines on how to access 
and use those libraries. The advent of object-oriented 
programming techniques has made it possible to extend 
the scope of the technical framework, effectively 
providing automatic implementation of many operations 
previously covered only by guidelines. This allows 
software developers to focus more on the task-specific 
implementation. 

Observatories such as ALMA and ATST as well as 
newer subsystems of current observatories have adopted a 
component-container model[3]. SW applications consist 
of independent components that communicate with each 
other using a number of integrated services. Typical 
technical aspects of system integration, like distribution, 
deployment and location of other components, are hidden 
to the developers. All these technical issues are the 
responsibility of containers provided by the framework: 
they are the ecosystem where components run and find 
convenient access to all services they might need.  

A component-based architecture is particularly useful 
in distributed and heterogeneous systems typical for our 
observatories, since it facilitates the practical partitioning 
of implementation into manageable units. However, for 
this strategy to be successful, the underlying technical 
infrastructure must ensure that the right information is 
delivered to the right place at the right time. The software 
layer involved in this information exchange is commonly 
known as communication middleware and supports the 
implementation of the connectivity and interoperability 
needs of the distributed applications.  

However, it is important to isolate the application 
software from the underlying middleware, given the need 
to migrate to different technologies during the lifetime of 
a project. Examples of this software layer include the 
Keck Task Library (KTL)[4] and the ALMA Container 
Services[5]. These provide language independent 

solutions allowing a common API to be used for control 
coordination and monitoring of the observatory.  

Common services adopted by the ALMA, ATST[6] and 
LSST[7] projects include:  
• Connection: locate and connect to other applications 

in a distributed environment 
• Event: high-performance asynchronous message 

handling 
• Command: client/service communication for 

application control. 
• Logging: telemetry capture as well as collection, 

recording, distribution and analyzes of messages.  
• Persistent Store: hold system configuration 

information, calibration data, performance data, etc.  
• Error Handling: monitor for improper behavior, 

report error conditions, and supports recovery 
operations 

Through the use of standards (e.g. NVO, XML, 
CORBA), hopefully current technical frameworks in use 
at different observatories will integrate better and possibly 
even converge in the future. Observatories that share the 
same technical framework API will be able to easily share 
functional components. Such a convergence needs to be 
done carefully, however, as the nature of these technical 
frameworks is still in flux. 

DEVELOPING METHODOLOGIES AND 
MODELING TECHNIQUES 

All recent observatory projects tried to leverage 
existing, off-the-shelf software technology to lower 
overall development and maintenance costs. Of course, as 
development methodologies and modelling techniques 
have evolved, so has their use in observatory projects.  

The problem of creating and describing a software 
design and verifying that it will satisfy project science 
requirements is extremely difficult. This is exacerbated by 
software development projects that are coupled to multi-
year observatory design periods with multiple 
requirement and milestone reviews. We have seen that 
many traditional project management and engineering 
approaches do not work well with software.  

The projects of the mid-90s were developed with the 
modeling tools and processes of that time. The imposed 
review structure lead to a waterfall development process 
to a greater or lesser degree. Object-oriented approaches 
were not widely adopted. For example, the control 
systems of Keck, Gemini, and VLT are largely C code, 
designed using structured programming methodologies 
such as Ward/Mellor.  

New projects within these observatories, as well as new 
observatory projects such as ALMA, SOAR, and ATST, 
more fully embraced object-oriented programming and 
UML for design and modeling. The extent of UML use 
varies but is generally limited to what is needed to explain 
the software in a common sense approach. No project has 
yet embraced the complete UML development process.  
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Naturally, the most recent projects are experimenting 
with the most recent approaches. For example, both E-
ELT and LSST are working with SysML (Systems 
Modeling Language) as a modeling approach that extends 
the ideas of UML to the entire system. SysML addresses 
two aspects that are particularly relevant for us:  

• Requirement capture, management and 
traceability: the inability to handle changing 
requirements often leads to a crisis during the 
integration of sub-systems provided by different 
groups or vendors. Moreover, the sheer number of 
requirements is increasing quickly as a function of 
project complexity. Many of us share the 
conclusion that rigidly planned approaches simply 
do not work well in our domain and that new, more 
agile approaches are needed.  

• Integration in a single, coherent, global system 
model, as seen from the point of view of different 
engineering disciplines (software, electronics, 
mechanics, optics and so on): software is the glue 
between all observatory sub-systems. In order to be 
able to coordinate the various parts, we need to 
understand the interfaces and the functional 
relationships.  

Large-scale software development in the commercial 
world faces similar challenges, from which a variety of 
new tools and processes have arisen. Agile processes such 
as Scrum are highly relevant to the current problems of 
telescope and astronomy software development. Several 
of our projects (Gemini, ALMA) have successfully used 
iterative and agile ideas to put software releases in the 
hands of users quickly so they can provide feedback into 
subsequent releases.  

The programmatic challenge is to integrate an agile 
software development approach with the mandated 
waterfall approach of funding agencies. In principle, this 
can be accomplished through education and positive 
experiences. It is still too early to measure the 
programmatic success of this approach. 

TECHNICAL ASPECTS 

Hardware platforms 
It is common to assert that hardware choice is driven by 

system architecture, but pragmatically it is often available 
hardware capability that dictates system architecture. In 
most operating observatories:  

• High-level coordination is performed by general 
purpose workstations.  

• Real-time tasks handled by local control units 
(LCUs), often VME-based.  

• Devices (motor controllers, sensors, actuators) are 
directly attached to the VME computers using 
appropriate I/O interfaces.  

Today many options are available in terms of cost and 
performance at all three levels.  

On the upper level, high-end workstations have been 
replaced by standard personal computers, with a 
significant reduction in purchase cost. However, the 
tremendous pace in personal computer and component 
evolution makes staged purchases and upgrades 
extremely complicated because it is often impossible to 
find compatible HW after just a few months.  

The soft real-time tasks once performed by the LCUs 
can now be handled by personal computers and 
(eventually) real-time extensions of the general purpose 
operating systems.  

Intelligent devices, interconnected directly via Ethernet 
or an industrial bus like CAN, can now handle many 
localized hard real-time tasks. Furthermore, I/O data 
acquisition functions are being handled by distributed 
field point units rather than directly by an LCU . Very 
high performance real-time tasks (such as detector control 
or adaptive optics system control) are being off-loaded to 
DSP and FPGA based systems. 

The implementation of fast distributed control loops to 
allow wave front control requires deterministic 
connections between the devices. At present, the most 
demanding systems use highly specialized solutions (for 
example both VLTI and Keck Interferometer use 
reflective memory technology). However, we foresee that 
generalized real-time and deterministic Ethernet or 
industrial buses will be widely used in observatories 
currently under development.  

In specific situations, concentrated, raw computing 
power is needed. The ALMA interferometer requirement 
to correlate thousands of baselines per second is just one 
example. Such problems are very well suited for clusters 
and multi-core/CPU farms where latency and network 
delay are not a problem.  

In parallel, solutions with high reliability and low 
lifecycle cost are highly desirable. A very interesting 
technology under evaluation for systems using large 
numbers of workstations (like the VLT) is virtualization. 
Using virtualization allows physical hardware to be de-
coupled from the logical machine where the software is 
run. This has a number of advantages: deployment 
procedures are simplified, virtual hardware shields us 
from changes in real hardware simplifying upgrade 
strategies, and redundancy and hot swapping are handled 
by the virtualization platform as well as network 
reconfiguration.  

Operating systems 
Almost all control systems for observatories developed 

in the 1990s run high-level coordination software on top 
of a proprietary UNIX operating system, like Solaris or 
HP-UX. The real-time systems are based on a proprietary 
real-time operating system, commonly VxWorks.  

In the last decade, open source solutions, especially 
Linux derivatives, have gained prominence at the high 
level. For example, the VLT has ported the complete 
control system to Linux and many projects are based on 
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this operating system. However, interest in Linux as a 
general solution has receded recently because total 
ownership cost relative to proprietary OSs has not 
declined as much as expected.  Linux is now seen as one 
possibility among several that need to be evaluated for 
specific deployment decisions. Moreover, Solaris is re-
emerging as a strong contender thanks to its x86 support 
and recent conversion to an open source product. 

Interestingly, MS Windows does not play a major role 
in our observatory control systems, even though it is now 
widely used in industrial control applications and there is 
now a trend for contractors to supply Windows based 
solutions, with the OLE for Process Control (OPC) 
standard allowing different vendors to interoperate well. 
Only a few projects like the Discovery Channel Telescope 
are committed to the Windows platform.  

In any case, the increasing role played in the upper 
application layers by Java and other high-level 
programming languages, which can enable effective 
independence from the underlying OS, can reduce the 
impact of OS choice.  

In the arena of real-time operating systems, VxWorks 
and various flavors of Real-Time Linux play a major role, 
incarnating the usual advantages and disadvantages of the 
commercial versus free solutions. New (at least for us) 
solutions on the horizon include:  

• Real-time Java and LabVIEW-RT solutions are 
extending their area of application and QNX is 
moving towards open source distributions.  

• PLCs, with their proprietary simple OS and 
programming languages, are more often used to 
control commercial-off-the-shelf equipment 

• FPGAs and DSPs are necessary for high 
performance requirements and bring their own 
specific development environments.  

Programming languages 
The main programming language used for the 

development of control applications between mid-80s and 
mid-90s was C. This was certainly true for the Keck, 
VLT, and Gemini observatories. Looking at the core 
telescope control functionalities (i.e. mount, dome, point 
and track, tip-tilt, chop, field rotation, mirror figures and 
alignment, interface and sequencing control), we can 
compare the application size (source lines of code) and 
programming languages actually used. Considering these 
projects were developed independently based on different 
frameworks/middleware the similarities are striking:  

 
Language  Keck VLT  
C  251050  246738  
C++  0  84400  
Capfast  130116  0  
Tcl/Tk  9408  81657  
Others  118144  64136  

Total  508718  476931  

Later projects used C++, particularly in the high-level 
coordination role. For example, VLT development started 
with C and although C is the only language used in the 
LCUs, C++ is used in all high-level coordination 
applications. In ALMA C++ is used everywhere, down to 
the real-time applications.  

However, we now see a clear decline in the usage of 
C++. On one side, Java is a much better object oriented 
language: it provides a huge amount of standard libraries, 
it is easier to learn and less error prone. For example, all 
ALMA high-level software is now implemented in Java 
and we have verified that porting C++ applications to 
Java (by the same expert C++ developer) resulted in a 
more reliable application. On the other side, C remains 
the favorite language for low-level real-time control. The 
structural complexity of these applications does not 
justify the introduction of an OO language, while at the 
same time it is easier to optimize algorithms in C. Not of 
least importance, good C developers are available in our 
observatories.  

The glue between applications and high-level 
sequencing is normally implemented using an interpreted 
language, such as Tcl/Tk or Python. The emergency of 
new interpreted languages is quite rapid and there are 
always new options available. Although developing small 
applications is in general very easy, we all feel 
uncomfortable in allowing the usage of such languages 
for critical applications, because of the more limited 
possibilities of testing and verifying applications written 
with these languages. 

Another language in use for control and monitoring 
applications is LabVIEW. This graphical programming 
development environment based on a dataflow paradigm 
is a radical departure from the sequential/deterministic 
style of text-based languages. SOAR and LSST project 
experience demonstrates that this paradigm adapts well to 
applications needed to control astronomical observations, 
in that the abstractions and structure of the software are 
closer to the real objects being manipulated. 

Clearly, we use several programming languages at the 
same time, for different purposes. Hence, a major concern 
is application interoperability. Many languages allow us 
to link and call code from C/C++ libraries, but this is 
often not sufficient in highly distributed systems. Here 
appropriate middleware can provide the solution. ALMA 
for example has chosen CORBA to provide 
interoperability between applications and components 
written in a set of supported languages and other projects 
have done similar choices.  

User Interface 
User interface design and implementation continues to 

be a challenging area. Modern systems and users require 
more than just a proliferation of panels with simple 
widgets to display status values. Producing a good UI 
takes significant effort, which is often under-estimated 
and under-budgeted. We have concluded that good UI 
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design and implementation requires a skill set that most 
control engineers simply do not possess. 

Looking across the observatories, Java and Tcl/Tk are 
the two most common technical solutions. Other solutions 
such as EPICS DM/EDD, Motif, Python/Tk or Qt are 
used to various degrees. In all cases the experience has 
been that the tools available are adequate for engineering 
panels but are not always sufficient to develop effective 
and user friendly end-user UIs. 

In terms of technological choice, we see no clear 
winner and certainly not one that fits all solutions. 
Experience has shown that GUI builders do not provide 
good solutions, with virtually no support for the human 
engineering aspects and often produce code that is poor in 
performance and difficult to maintain. Such builders are 
most useful for the development of relatively simple UIs. 

While modern tools and languages such as 
Python/Tk/Qt, LabVIEW or IDL promote rapid 
prototyping, very often these displays tend to be 
engineering centric and often bypass good development 
practices. Unfortunately, what are essentially prototype 
user interfaces often end up in operational environments, 
to the detriment of users and maintenance teams. 

The human factor is also important in UI development. 
In general the UIs are growing more complex and require 
more attention with an emphasis on overall workflow and 
usability. While many requirements can be established 
early via use cases and end-user interviews, it is important 
to implement mock-ups and functional prototypes. The 
ability to rapid prototype UIs as part of a feedback loop 
with users is key to getting the human factor right. If this 
loop is too costly it can mean that the system ends up 
operating from overly technical engineering interfaces. 
Unfortunately, observatory projects often cannot afford to 
have an independent UI development team, experienced 
in working with end-users. 

CHALLENGES OF NEW PROJECTS  
Adaptive optics and laser guide star systems under 

development for existing facilities as well as the next 
generation of extremely large telescopes currently under 
development pose new challenges for control systems in 
both size and complexity. For example, the E-ELT 
incorporates a large 2.5 m deformable mirror with more 
than 5000 actuators and close to 1000 mirror segments 
controlled in tip, tilt and piston as well as overall shape. It 
is estimated that E-ELT will have more than 100 000 I/O 
points, a 10-fold increase relative to current 8-10m 
telescopes. A large number of control loops, some 
distributed, with sampling frequencies up to a few kHz 
have to work in unison. Stroke and closed loop bandwidth 
must be managed by multi-level off-load schemes. 
Further, the large number of actuators and sensors impose 
challenging requirements on fault detection, isolation and 
recovery.  

At the same time, operational efficiency requirements 
have become more rigorous. For example, TMT has a 
requirement that target acquisition anywhere on the sky 
must be completed within five minutes. Ease of use and 
operational efficiency need to be considered at every 
stage of the software and hardware design and 
implementation cycle. 

CONCLUSION  
This paper summarizes an on-going analysis of control 

system evolution in astronomical observatories. From this 
analysis, we hope to share lessons learned and identify 
areas where greater cooperation across current operational 
observatories, as well as facilities under development, 
would be beneficial. The move towards open source 
paradigms and large international collaborations to share 
cost has made such collaboration more practical and 
affordable. In particular, we hope to be able to share 
technical architectural elements and infrastructure 
components more frequently, so that each observatory or 
project can focus on specific, science-driven needs. 
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