

Pursuing the Origin and Remediation of Low Q_0 observed in the Original CEBAF Cryomodules

Rong-Li Geng, John Fischer, Feisi He*, Yongming Li*, Charlie Reece, Tony Reilly Jefferson Lab

Contributed Oral Presentation THOBB01

th International Particle Accelerator Conference

JUNE 15 - 20, 2014 | DRESDEN, GERMANY

Acknowledgement

- We thank the entire JLab Cryomodule Assembly Group for their cooperation and flexibility.
- We thank Gary Cheng for useful discussion and assistance in 3-axis magnetic sensor.
- We thank Kirk Davis for assistance in 1-axis magnetic sensor.
- We than Pete Kushnick for assistance in creative use of JLab VTA for this study.
- Yongming Li and Feisi He are graduate students from Peking University. This effort would not have been possible without their enthusiasm and energy.

Outline

- Introduction
- Low Q₀ issue and prior effort
- New effort
- Results and outlook
- Conclusion

Introduction

CEBAF: Continuous Electron Beam Accelerator Facility

Basic research of atoms's nucleus

Construction 1987-1993 Currently being upgraded

First large-scale application of SRF linac technology

The same SRF technology plus Energy Recovery Linac technology used for JLab's Free Electron Laser

CEBAF SRF Cavities

Together for 12 GeV nuclear physics run

Original CEBAF cavity

- 5-cell, Cornell-Type
- 338 cavities in 42-1/4 moduels
- Design
 - Ea=5 MV/m
 - Q₀=2.4×10⁹ @ 5 MV/m
- Achieved
 - <Ea>=7.5 MV/m, <Q₀>=5×10⁹@ 5MV/m
 - Helium processing
- Achived
 - <Ea>=12.5 MV/m, <Q₀>=5×10⁹@ 5MV/m
 - Refurbishing
- 2x 600 MV

JSA

- 5 kW 2K cooling power
- 5 MW liquefier operation power

CEBAF upgrade cavity

- 7-cell, Low-Loss Shape
- 80 cavities in 10 moduels
- Design
 - Ea=19.2 MV/m
 - Q₀=7.2×10⁹ @ 19.2 MV/m
- Achieved
 - <Ea>=22.2 MV/m
 - <Q0 @ 19.2 MV/m>=8.1×10⁹
- 2x (600 + 500) MV
- Add ~5 kW 2K cooling power
- Add ~ 5 MW liquefier operation power

Low Q₀ issue and Prior Effort

Original Cavity and Cryomodule

Cryo unit

- A. Vacuum Shell Flange
- B. Magnetic Shield and Inner Superinsulation
- C. HOM Load
- D. Cavity
- E. Shield Superinsulation
- F. Helium Vessel
- G. Flange Surface on Isolation Valve
- H. 40 to 50 K Radiation Shield

- I. Shield Helium Supply Line
- **Outboard Cavity Support** J.
- Axial Support к.
- Rotary Feedthrough
- Fundamental Power Waveguide М.
- Tuning Mechanism N.
- Helium Vessel Support Rod 0.
- P. 2 K Helium Return

4x cryo unit -> cryomodule (8.25 m long)

A GAR

-01-

DATE BRACKET ITEM 9 USN

TACK WELD ALIXIMMENT BLOCK ITEM #33. 2 PLACES LOCATED AS SHOWN ITY/MCAL 9 PLACES

(+.50) 🛆

R.L. Geng, IPAC14, Dresden, Germany, June 15-20, 2014

*Asterisked items shown only once to simplify illustration.

Unloaded Quality Factor Q₀

- $P_{c} = \frac{V^{2}}{\frac{R}{O} \cdot Q_{0}} \qquad \begin{array}{l} \mathsf{P}_{c}: \text{ power dissipation per cavity } >> \text{ cryogenic load} \\ \mathsf{V}: \text{ voltage per cavity} \\ \mathsf{R}/\mathsf{Q}: \text{ determined by cavity shape} \end{array}$

$$R_{s} = R_{BCS} + R_{res}$$

R_{BCS}: BCS resistance R_{res}. Residual resistance

 Q_{n} can be lowered by extrinsic factors such as field emission

Residual Resistance

- Hydrogen in niobium
 - Hydride precipitation 50-150K >>> "Q-disease"
 - Mitigation
 - Fast cool down
 - Vacuum furnace outgassing
- Frozen flux effect
 - Ambient magnetic field
 - Magnetic component
 - Cryogenic thermal path

Prior Investigation - 1993

- Ambient magnetic field
- Cavity cool down rate
 - original cavities not vacuum furnace outgassed -> prone to "Q-disease"
- Coupler loss

No conclusive finding

W.J. Schneider et al., SRF'93

Prior Investigation: 2007-2009

- Cryomodule refurbished
 - 10 weakest modules
 - Goal:
 - Raise voltage for CEBAF energy reach
 - 20 -> 50 MV per module
 - Dynamic heat load budget
 - 100 W per module
 - Cavity performance goal
 - Eacc=12.5 MV/m
 - Q₀ \ge 6.8×10⁹ @ 12.5 MV/m at 2K
 - Modern-day processing
 - Vacuum furnace outgassing
 - remove hydrogen
 - HPR
 - reduce field emission

Photo credit: M. Mccrea/Leonard Page

Prior Investigation: 2007-2009

- Result from first 5 modules (C50-1...5)
 - Field emission reduced >>> higher gradient
 - Still a factor of 2 loss in Q₀!!!
- Renewed investigation
 - Identification of magnetized ball-screw
 - Mitigation in C50-6
 - wrap magnetic shielding around ball-screw
 - Inner magnetic shielding explored in C50-8
- None of 80 refurbished cavities met the set Q₀ goal at 12.5 MV/m at 2K

Comparison of RF Heat Loads

Photo credit: M. Mccrea/Leonard Page

Some improvement due to ball-screw shielding – but insufficient

Encouraging step forward

R.L. Geng, IPAC14, Dresden, Germany, June 15-20, 2014

New Effort

New Effort: 2013

- Latest cryomodule refurbishment
 - Cryomodule pulled out from 9th slot in south linac
 - In parallel to refurbishing activities, systematic studies of following issues:
 - Survey of the as-found cryomodule
 - Magnetic properties of all components contained inside He vessel
 - Shielding effect of the two layer magnetic shields
 - Ambient magnetic field at cryomodule slot in CEBAF tunnel
- Goal:
 - Understand clearly the origin of low Q_0
 - Develop mitigation
 - Implement mitigation where schedule permits

Survey of As-found Cryomodule

Near axis field under as-found condition over entire module

Re-measure after components inside He vessel removed

- Clear evidence of presence of magnetized components inside helium vessel
- Responsible for >70% of the measured flux

Additional Probing in As-Found Condition

R.L. Geng, IPAC14, Dresden, Germany, June 15-20, 2014

JSA

Discovery of Magnetized Strut Springs

High-µ and high remanent field springs from original module

New low-µ and low remanent field Springs acquired and implemented

Comparison of New & Old Springs

Remanent magnetic flux density of 4 groups of strut springs

Peak magnetic permeability of 4 groups of strut springs

Jefferson Lab

Further Assessment of Springs

New 316 springs far better !

10⁸

 ▲
 Q0 - 2.0K, 3 new 316 springs, 22may13

 ◆
 Q0 - 2.0K, Re-baseline, 13jun13

 0
 5
 10
 15

 Eacc [MV/m]
 RLGENG22jun13

Jefferson Lab

Impact of strut springs to Q0 (1-cell 1300 MHz cavity G2 RF test at 2K)

R.L. Geng, IPAC14, Dresden, Germany, June 15-20, 2014

2nd & 3rd Offending Components

Threaded rod

- Bpk 1.7 G
- High permeability
- Ball bearings of all sizes
 - Bpk 0.5 G
 - High permeability

Bpk: Peak remanent magnetic flux at contact

Mitigation of Magnetic Tuner Components

Shielding of ballscrew in earlier C50 modules Result: visible but very small Q0 imporvement

- Degauss the following tuner components
 - Threaded rod
 - Ball screw block
 - All ball bearing (including those in gear box)
- Practice "clean magnetic" handling practice after degaussing

New 316L threaded rod in hand

Comparison of New & Old Threaded Rods

RLGENG22apr13

Magnetic field measured at near contact at end surfaces of threaded rod

Relative permeability measured at various locations

1000

Preliminary Assessment of Magnetic Shields

Preliminary Assessment of Magnetic Shields

Outer layer shielding factor > 10 Inner layer shielding factor ~ 2 at RT

SL10 Ambient Magnetic Field Survey

February 7-8, 2013 in CEBAF Tunnel

Jefferson Lab

R.L. Geng, IPAC14, Dresden, Germany, June 15-20, 2014

SL10 Ambient Field Survey Results

New Mitigation Procedure

(in order of precedence)

- Replace magnetized components inside He vessel
 - New 316 SS strut springs (implemented)
 - New 316L SS threaded rods (to be implemented)
 - For C50-11
 - Degaussing all other known magnetized components
 - » threaded rod, ball bearing
 - Wrap ball-screw with shielding box
- Improve magnetic shielding
- Mitigate ambient field in CEBAF tunnel ^J

Further study in future

Results and Outlook

Q₀ (at 5 MV/m) Preservation

- 3 cavities preserved Q₀ at 5 MV/ m at 79-88%
 - Encouraging first result
- Last 4 cavities still at 50%
- It is noted ball-screw shielding box for first 4 cavities different than for last 4 cavities
 - Still consistent with findings
- No correlation with ambient magnetic field in range of 0-1 G
 - Good news, mitigation in magnetic shielding or ambient field may not be needed
 - Further studies needed

Exploration of In-Situ Remediation for Improving Q₀

- Such a remedy could provide a cost-effective interim solution before an expensive cryomodule refurbishment opportunity arrives
- Any saving in cooling power can be used to enhance the acceleration voltage and improve the robustness of the energy reach of CEBAF.

- 1-cell testing studies started in August 2013
 - 30% loss in Q0 from cryogenic thermal annealing below Tc
 - 30% loss in Q0 from slow crossing Tc
 - 30% gain by partial warm up followed by rapid cool down
- Typical cool down rate crossing Tc at dewar bottom ~ 3K/min
- Lowest achieved 1-cell cavity cool down rate crossing Tc ~ 4mK/min
- Good match with actual cool down rate in CEBAF cryomodule

Possible Q₀ Recovery by "Mobile Magnetic Shield"

Conclusion

- Origin of low Q₀ in original CEBAF cryomodules further understood
 - Magnetized strut springs with large remanent magnetic flux the leading culprit
- New mitigation procedure developed and partially implemented
 - Best case Q₀ at 5 MV/m at 2 K preservation of 88% achieved
- Experimented techniques of manipulating trapped flux by thermal cycling cavities in-situ in CEBAF tunnel
 - A possible interim solution for improving Q₀ before expensive refurbishment opportunity arrives
- Any gain in Q₀ alleviates pressure of increasing demand for more cooling power
 - Useful to enhance acceleration voltage and robustness of CEBAF energy reach

