Electron Beam Dynamics
Paper Title Page
MOP052 Linear Vlasov Solver For Microbunching Gain Estimation with Inclusion of CSR, LSC, And Linac Geometric Impedances 147
 
  • C.-Y. Tsai
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • D. Douglas, R. Li, C. Tennant
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
As is known, microbunching instability (MBI) has been one of the most challenging issues in designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of transport lines for recirculating or energy recovery linac machines. To more accurately quantify MBI in a single-pass system, we further extend and continue to increase the capabilities of our previously developed linear Vlasov solver [1] to incorporate more relevant impedance models into the code, including transient and steady-state free-space and/or shielding CSR impedances, the LSC and linac geometric impedances with extension of the existing formulation to include beam acceleration [2]. Then, we directly solve the linearized Vlasov equation numerically for microbunching gain amplification factor. In this study we apply this code to a beamline lattice of transport arc [3] following an upstream linac section. The resultant gain functions and spectra are presented here, and some results are compared with particle tracking simulation by ELEGANT [4]. We also discuss some underlying physics with inclusion of these collective effects and the limitation of the existing formulation. It is anticipated that this more thorough analysis can further improve the understanding of MBI mechanisms and shed light on how to suppress or compensate MBI effects in lattice designs.
[1] C. -Y. Tsai et al., FEL'14 (THP022), IPAC'15 (MOPMA028) and ERL2015 (TUICLH2034)
[2] M. Venturini, Phys. Rev. ST Accel. Beams 10, 104401 (2007)
[3] D. Douglas et al., arXiv: 1403.2318v1 [physics.acc-ph]
[4] M. Borland, APS Light Source Note LS-287 (2000)
 
poster icon Poster MOP052 [4.934 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP053 Intra-Beam Scattering in High Brightness Electron Linacs 153
 
  • S. Di Mitri
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Intra-beam scattering (IBS) of a high brightness electron beam in a linac has been studied* analytically, and the expectations found to be in reasonable agreement with particle tracking results from the Elegant code. It comes out that, under standard conditions for a linac driving a free electron laser, IBS plays no significant role in the development of microbunching instability. A partial damping of the instability is envisaged, however, when IBS is enhanced either with dedicated magnetic insertions, or in the presence of an electron beam charge density at least 4 times larger than that produced by present photo-injectors.
* S. Di Mitri, Phys. Rev. Special Topics Accel. Beams, 17, 074401 (2014).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP054 Wake Field Potentials of 'Dechirpers' 157
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy Contract No. DOE-AC03-76SF00515.
A corrugated structure, which is used on 'dechirpers' is usually a pipe or two plates with small corrugations (bumps) on the walls. There is a good single-mode description of the wake potentials excited by a relativistic bunch if the wave length of the mode is much longer than the distance between the bumps in the pipe. However, ultra-short bunches, which are now used in FELs, excite much higher frequency fields and the corresponding wake potentials will be very different from single-mode description. We made analyzes of these wake potentials based on a numerical solution of Maxwell's equations. The behavior of the wake fields of ultra-short bunches in corrugated structures is not much different from the fields excited usually in accelerating structures where the wake potentials are described by the exponential function. As we increase the bunch length, the wake potentials slowly transform to the form of a single mode. For a practical application we present results for a 'dechirper', which will be soon installed at LCLS. We also carried out calculations for a similar device, that was installed and measured at the Pohang Accelerator Laboratory, Korea. We find very good agreement with the experimental results.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP055 The Effect of Wakefields on the FEL Performance 161
 
  • A. Novokhatski, F.-J. Decker, Y. Nosochkov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy Contract No. DOE-AC03-76SF00515.
If a beam travels near collimator jaws or other discontinuities of the beam pipe, it gets the energy loss and the transverse kick due to the back reaction of the beam field diffracted on the collimator's jaws. The wake field effect from collimators may not only bring an additional energy jitter and change the trajectory of the beam, but may also lead to degradation of the performance of Free Electron Laser (FEL) It may be possible due to the special character of the wake fields: the response reaction depends on the longitudinal position of the particles in the bunch. We describe a model of the wake field radiation, simulation results and comparison with measurements.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP056 Reversible Electron Beam Heater without Transverse Deflecting Cavities 166
 
  • G. Stupakov, P. Emma
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by Department of Energy contract DE-AC03-76SF00515.
Suppression of microbunching instability in modern FELs is an important issue that often limits the performance of the machine. A technique to suppress the instability with the help of a reversible electron beam heater was proposed by C. Behrens, Z. Huang, and D. Xiang [*]. It employs transverse deflecting cavities synchronized in a way that one of the cavities, located before a bunch compressor, generates a slice energy spread, while the other one removes it after the beam passes through the bunch compressor. Being an attractive approach, this concept unfortunately imposes extremely tight tolerances on the synchronization of the cavities. In this paper we demonstrate that a reversible heater equivalent to that of Behrens et al. can be designed using much simpler elements: bend magnets and quadrupoles in combination with the energy chirp of the beam.
* C. Behrens, Z. Huang, and D. Xiang, PRST-AB 15, 022802 (2012).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP057 Front End Simulations and Design for the CLARA FEL Test Facility 171
 
  • J.W. McKenzie, A.D. Brynes, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  We present the design and simulations of the Front End for CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. This is based around an S-band RF photocathode gun. Initially this will be the 2.5 cell gun, currently used on VELA facility at Daresbury, which is limited to 10 Hz repetition rate. Later, this will be up-graded to a 1.5 cell gun, currently under development, which will allow repetition rates of up to 400 Hz to be reached. The beam will be accelerated up to 50 MeV with a booster linac which will be operated in both bunching and boosting modes for different operating regimes of CLARA. Simulations are presented for a currently achieved performance of the RF system and drive laser with optimisation of the laser pulse lengths for various operational modes of CLARA.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP060 RFTweak 5 - An Efficient Longitudinal Beam Dynamics Code 176
 
  • B. Beutner, H. Dinter, M. Dohlus
    DESY, Hamburg, Germany
 
  The shaping of the longitudinal phase space in bunch compression systems is essential for efficient FEL operation. RF systems and self-field interactions contribute to the overall phase space structure. The design of the various facilities relies on extensive beam dynamics simulations to define the longitudinal dynamics. However, in everyday control room applications such techniques are often not fast enough for efficient operation, e.g. for SASE tuning. Therefore efficient longitudinal beam dynamics codes are required while still maintaining reasonable accuracy. Our approach is to pre-calculate most of the required data for self-field interactions and store them on disc to reduce required online calculation time to a minimum. In this paper we present the fast longitudinal tracking code RFTweak 5, which includes wakes, space charge, and CSR interactions. With this code the full European XFEL with a 1M particles bunch is calculated on the order of minutes on a standard laptop. Neglecting CSR effects this time reduces to seconds.  
poster icon Poster MOP060 [0.799 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP062 Technology Maturation for the MaRIE 1.0 X-FEL 181
 
  • J.W. Lewellen, K. Bishofberger, B.E. Carlsten, L.D. Duffy, F.L. Krawczyk, Q.R. Marksteiner, D.C. Nguyen, S.J. Russell, R.L. Sheffield, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This research was funded by the Matter-Radiation Interactions in Extremes program at Los Alamos National Laboratory, under contract DE-AC52-06NA25396.
Los Alamos National Laboratory is proposing a high-energy XFEL, named MaRIE*, to meet its mission needs. MaRIE will be required to generate coherent 42+ keV photons, and, due to space constraints at the LANSCE accelerator complex at Los Alamos, MaRIE's design electron beam energy is 12 GeV. This combination places significant restrictions upon the MaRIE electron beam parameters, in particular the transverse emittance and energy spread at the undulator entrance. We are developing approaches to meet these requirements, but these often require solutions extending beyond the current state-of-the-art in X-FEL design. To reduce overall project risk, therefore, we have identified a number of key experimental and modeling / simulation efforts intended to address both the areas of greatest uncertainty in the preliminary MaRIE design, and the areas of largest known risk. This paper describes the general requirements for the MaRIE X-FEL, our current areas of greatest concern with the preliminary design concept, and our corresponding Technology Maturation Plan (TMP).
* MaRIE website: http://www.lanl.gov/science-innovation/science-facilities/marie/index.php
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP063 Transverse Emittance Measurement of KAERI Linac with Thick Lens Quadrupole Scan 185
 
  • S. Setiniyaz, I.H. Baek, M.S. Chae, B.A. Gudkov, B. Han, K.H. Jang, Y.U. Jeong, H.W. Kim, S.V. Miginsky, J.H. Nam, S. Park, N. Vinokurov
    KAERI, Daejon, Republic of Korea
  • S.V. Miginsky, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  The UED (Ultrafast Electron Diffraction) beamline of KAERI (Korea Atomic Energy Research Institute) WCI (World Class Institute) Center has been completed and successfully commissioned. Transverse emittance of the electron beam was measured at the entrance of the UED chamber with the quadrupole scan technique. In this technique, larger drift distance between the quad and screen is preferred because it gives better thin lens approximation. A space charge dominated beam however, will undergo emittance growth in the long drift caused by the space charge force. We suggest mitigating this growth by introducing quadrupole scan with short drift and without thin lens approximation. We shall discuss the measurement process and results.  
poster icon Poster MOP063 [1.287 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP066 Electron Bunch Length Measurement using an RF Deflecting Cavity 188
 
  • S. Park, E.-S. Kim
    Kyungpook National University, Daegu, Republic of Korea
  • S. Bae, K.H. Jang, Y.U. Jeong, H.W. Kim, J. Mun, N. Vinokurov
    KAERI, Daejon, Republic of Korea
 
  Recently, the RF photogun based-ultrafast electron diffraction (UED) system has been developed in KAERI. In the system, the emitted electron bunches are experimentally confirmed to be accelerated up to 3 MeV at 5MW of RF power. And the time duration of the each bunch is initially designed to be less than 50 fs at the sample position. To analyses the performance of the system and to measure exactly the length of the electron bunches, we developed a rectangular type of S-band deflecting cavity working on TM120 mode. The principle of electron deflecting in the cavity, design & mechanical fabrication process and test results will be present in the conference.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP087 Multistage CSR Microbunching Gain Development in Transport or Recirculation Arcs 263
 
  • C.-Y. Tsai
    Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
  • D. Douglas, R. Li, C. Tennant
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Coherent synchrotron radiation (CSR) induced microbunching instability has been one of the most challenging issues in the design of modern accelerators. A linear Vlasov solver has been developed [1] and applied to investigate the physical processes of microbunching gain amplification for several example lattices [2]. In this paper, by further extending the concept of stage gain as proposed by Huang and Kim [3], we develop a method to characterize the microbunching development in terms of stage orders that allow the quantitative comparison of optics impacts on microbunching gain for different lattices. We find that the microbunching instability in our demonstrated arcs has a distinguishing feature of multistage amplification (e.g, up to 6th stage amplification for our example transport arcs, in contrast to two-stage amplification for a typical 4-dipole bunch compressor chicane). We also try to connect lattice optics pattern with the obtained stage gain functions by a physical interpretation. This Vlasov analysis is validated by ELEGANT [4] tracking results with excellent agreement.
[1] C. -Y. Tsai et al., MOP052, these proceedings
[2] See, for example, C. -Y. Tsai et al., ERL2015 (TUICLH2034)
[3] Z. Huang and K. -J. Kim, Phys. Rev. ST Accel. Beams 5, 074401 (2002)
[4] M. Borland, APS Light Source Note LS-287 (2000)
 
poster icon Poster MOP087 [1.962 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUC01 The Microbunching Instability and LCLS-II Lattice Design 308
 
  • M. Venturini
    LBNL, Berkeley, California, USA
 
  The microbunching instability is a pervasive occurrence when high brightness electron beams are accelerated and transported through dispersive sections like bunch-compression chicanes or distributions beamlines. If uncontrolled the instability can severely compromise the performance of x-ray FELs, where beam high brightness is crucial. In this talk we discuss how consideration of the microbunching instability is informing the LCLS-II design and determining the specifications for the laser heater and transport lines. We also review some of the expected and not so-expected phenomena that we have encountered while carrying out high-resolution macroparticle simulations of the instability and the analytical models we have developed to interpret the numerical results.  
slides icon Slides TUC01 [4.206 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUC02
Ultra-Low Charge, Ultra-High Brightness Frontiers of Photoinjectors: Challenges and Perspectives  
 
  • R.K. Li
    SLAC, Menlo Park, California, USA
 
  Photoinjectors deliver high brightness electron beams that are essential to the success of FELs. Higher beam brightness can boost the performances of existing facilities and enable new capabilities of future ones. Ultralow charge (a few pC and lower) is the choice to reach higher brightness thanks to the favorable scaling, as well as longitudinally coherent, single-spike FELs. This parameter space is particularly relevant for future high rep-rate machines. Despite the ultralow total charge, the charge density is still high and collective effects need to be studied in-depth. The extreme emittance, bunch length, spot size, and charge also pose challenges on the diagnosis of these beams. In this talk, we will discuss recent progress on the generation, manipulation, and diagnosis of ultralow charge beams, including e.g. shaping the space charge dominated beams to maximize the phase space density, new techniques to characterize the nm-rad-level emittance, and new advances in photocathode physics and rf structures. Many of the above progress are motivated by the recent development of ultrafast electron diffraction and microscopy using photoinjectors. Understanding and controlling the high brightness beams in accelerators with the high stability and precision typical in the electron microscopy community, constitutes an R&D frontier on electron beams and sources for the coming decades.  
slides icon Slides TUC02 [2.858 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUC03
Low Slice Emittance Preservation in Bunch Compressors  
 
  • S. Bettoni, M. Aiba, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger
    PSI, Villigen PSI, Switzerland
  • B. Beutner
    DESY, Hamburg, Germany
 
  Minimize the dilution of the beam emittance is crucial for accelerators, and in particular for Free Electron Lasers, where the length of the machine and the finally the efficiency of the lasing process depend on it. At the SwissFEL Injector Test Facility we measured unexpected slice emittance increase after compressing the bunch also for moderate compression factors. We experimentally characterized the dependency of this phenomenon on the beam and machine parameters relevant for the compression. In order to qualitatively reproduce all the measurements outcomes it was necessary to use a 3D beam dynamic model along the bunch compressor including coherent synchrotron radiation. After excluding space charge forces, spurious dispersion and microbunching instability as possible sources for the observed emittance dilution, we identified the coherent synchrotron radiation and its interaction with the electron beam as the main responsible of the phenomenon. We also studied both experimentally and with simulations the contribution of the mismatch along the bunch to the longitudinal variations of the slice emittance. These experimental and theoretical investigations allowed a re-optimization of the injector. Typically with 150 A peak current, 200 pC charge it was possible to reach less than 200 nm.rad for the central slice with a moderate increase up to less than 300 nm.rad on the tails.  
slides icon Slides TUC03 [1.395 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUC04
Image Charge Effect on Emittance Reduction Phenomenon in Electron Gun  
 
  • T. Nogi
    Kyoto Univeristy, Kyoto, Japan
  • T. Katsurayama, T. Kii, K. Masuda, K. Morita, T. Murata, K. Nagasaki, H. Ohgaki, S. Suphakul, K. Torgasin, H. Yamashita, H. Zen
    Kyoto University, Kyoto, Japan
 
  Development of next generation light sources requires reduction of beam emittance. The emittance can be influenced in the vicinity of a cathode, where electron energy is low and the beam dynamics is dominated by space charge and image charge effect. Recently it was discovered that for ideal DC acceleration emittance rises near cathode and subsequently decreases due to self-linearization force caused by space charge effect [*]. This phenomenon occurs for accelerating field, which is lower than usually applied at conventional electron guns. It is an issue that this concept is feasible for electron gun configuration of real injectors. In this research we numerically investigate the transverse emittance and its dependence on parameters such as current density, accelerating field and the distance from the cathode. As a result, the position of minimal emittance was found to be correlated to perveance. This position can be varied by proper settings of parameters. In this conference, we will present these phenomena seen numerically in the SCSS thermionic gun geometry.
* A. Mizuno, et al., Nucl. Instr. Meth. Phys. Res. A 774 (2015) 51-59.
 
slides icon Slides TUC04 [1.604 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP065 Beam Dynamics Simulation for the Upgraded PITZ Photo Injector Applying Various Photocathode Laser Pulses 501
 
  • M. A. Bakr, M. Khojoyan, M. Krasilnikov, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • M. A. Bakr
    Assiut University, Assiut, Egypt
 
  The Photo Injector Test facility PITZ at DESY, Zeuthen site, characterizes and optimizes high brightness electron sources for linac-based Free Electron Laser (FELs) with a specific focus on the requirements of FLASH and the European XFEL. X-ray FELs require high brightness electron beam in terms of high peak current, small transverse emittance and energy spread. Such high quality beams are mandatory for efficient SASE generation in a single pass through long undulators with narrow gaps. Photocathode laser pulse shaping is a powerful tool to optimize the photo injector performance. Recently, a new photocathode laser system capable of producing 3D quasi-ellipsoidal pulses has been installed at PITZ. It is foreseen to operate this new system in parallel to the nominal one that generates cylindrical pulses with various temporal profiles. A set of numerical simulations was performed to study and compare the beam dynamics of electron beams produced with 3D ellipsoidal laser profile with the typical cylindrically shaped (flat-top) profile. Different bunch charges from 20 pC up to several nC are considered, in order to find an optimum PITZ machine setup which will yield the lowest transverse emittance. we present and discuss the results of this comparison in the submission.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP066 Benchmark of ELEGANT and IMPACT 505
 
  • L. Wang, P. Emma, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The beam dynamics codes ELEGANT and IMAPCT have many users. We use these two codes for the design of LCLSII. Both codes use a 1D model for the coherent synchrotron radiation (CSR) in bend magnets. In addition, IMPACT has a 3D space-charge model, while ELEGANT uses a 1D model. To compare the two codes, especially the space-charge effects, we systematically benchmark the two codes with different physics aspects: wakefields, CSR and space-charge forces.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP067 Effect of Hot Ions in LCLC-II 508
 
  • L. Wang, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  The ions in a linac, such as ERL, draw more attention recently. LCLSII has a long linac with 1MHz repetition rate. The ions, in general, are not deeply trapped due to the long bunch spacing. The effect of ion thermal energy becomes important in this regime. The beam dynamics with ions are studied numerically. There is a linear growth in amplitude, but not exponential growth as traditional fast ion instability. This instability set a maximum bunch-train length to limit the beam amplitude to fractional beam σ. Theoretical works are also done to compare the simulations. We also extend our works to different regimes where the motions of ions from stable to unstable.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP068 Electron Beam Phase Space Tomographie at the European XFEL Injector 515
 
  • M. Scholz, B. Beutner
    DESY, Hamburg, Germany
 
  Transverse emittances as well as the energy spread and the peak current of the electron bunches are important parameters for high-gain free electron lasers such as the European XFEL. Investigations of the 6D phase space characterisation would give important indications to optimise the beam quality for SASE operation. The injector of the European XFEL includes, inter alia, a laser heater, a transverse deflecting cavity, a spectrometer, a diagnostic section with four OTR screens as well as several quadrupole magnets. In this paper, we will discuss the possibilities to characterise the 6D phase space of the electron beam in the injector of the Eurpean XFEL.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP069 THz Based Phase-Space Manipulation in a Guided IFEL 519
 
  • E.J. Curry, S. Fabbri, P. Musumeci
    UCLA, Los Angeles, California, USA
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: This work has been supported by DOE grant DE-FG02-92ER40693, and NSF grant PHY-1415583.
We propose a guided IFEL interaction driven by a broadband THz source to compress a relativistic electron bunch and synchronize it with an external laser pulse. A high field single-cycle THz pulse is group velocity-matched to the electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. The THz pulse is generated via optical rectification from the external laser source, with peak field of up to 4.6 MV/m. We present measurements of the THz waveform before and after a parallel plate waveguide with varying aperture size and estimate the group velocity. We also present results from a preliminary 1-D multi-frequency simulation code we are developing to model the guided broadband IFEL interaction. Given a 6 MeV, 100 fs electron bunch with an initial 10-3 energy spread, as can be readily produced at the UCLA Pegasus laboratory, the simulations predict a phase space rotation of the bunch distribution that will reduce the initial timing jitter and compress the electron bunch by nearly an order of magnitude.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP070 Energy Jitter Minimization at LCLS 523
 
  • L. Wang, A.L. Benwell, A. Brachmann, W.S. Colocho, F.-J. Decker, Z. Huang, T.J. Maxwell, T. Tao, J.L. Turner
    SLAC, Menlo Park, California, USA
 
  The energy jitters of the electron beam can affects the FEL in self-seeded modes if the jitter is large compared to the FEL parameter. We work in multiple ways to reduce the jitters, including hardware improvement, optimization linac set-up. This paper discusses the optimization of linac set-up. The solutions always suggest that we can largely reduce the energy jitter from a weak compression at BC1 and a stronger compression at BC2. Meanwhile a low beam energy at BC2 also reduce the energy jitter, which is confirmed by the experiment. The results can be explained by a simple model. Experimental results are also presented, demonstrating better than 20% and 40% relative energy jitter reduction for 13.6 and 4 GeV linac operation, respectively.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP071 A FAST Particle Tracking Code 530
 
  • L. Wang
    SLAC, Menlo Park, California, USA
 
  This paper presents a fast particle tracking (FPT) code for linac beam dynamics. It includes wake fields, coherent synchrotron radiation (CSR) and longitudinal space charge. We systematically benchmark the FPT with ELEGANT with different physics aspects: pure optics, wakefields, CSR and space-charge forces  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP072 Cathode Ion Bombardment in LCLS and LCLS-II RF Gun 534
 
  • L. Wang, A. Brachmann, F.-J. Decker, Z. Li, T.O. Raubenheimer, J.F. Schmerge, F. Zhou
    SLAC, Menlo Park, California, USA
 
  This paper studies the ions bombardment on the cathode in the LCLS and LCLS-II gun. APEX gun is used here for LCLS-II, which will be operate at 1 MHz repetition rate. Therefore, It is important to estimate the ion bombardment. One specific PIC code is used track arbitrary particles (ions and electron here) in arbitrary 2D/3D electromagnetic field and solenoid field to estimate the possibility of ion bombardment. The LCLS gun has 1.6 cells while the LCLS-II gun (APEX gun) is a half-cell gun. The frequencies of the two guns are also quite different. These characters make the ion dynamics quite differently. We estimated the bombardment for various ion species and studied the effects RF pulse shape and RF phase  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP058 Emittance Measurements at the PAL-XFEL Injector Test Facility 690
 
  • J. Lee
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Han, J.H. Hong, C.H. Kim, I.S. Ko, S.J. Lee, S.J. Park, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The PAL-XFEL Injector Test Facility (ITF) at PAL has been operating for experimental optimization of electron beam parameters and for beam test of various accelerator components. It consists of a photocathode RF gun, two S-band accelerating structures, a laser heater system, and beam diagnostics such as ICTs, BPMs, screens, beam energy spectrometers and an RF deflector. Projected and slice emittance measurements were carried out by using single quadrupole scan. In this paper, we present the emittance measurements.  
poster icon Poster WEP058 [0.646 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP060 Longitudinal Electron Bunch Shaping Experiments at the PAL-ITF 694
 
  • M. Chung, J.M. Seok
    UNIST, Ulsan, Republic of Korea
  • J.H. Han, J.H. Hong, H.-S. Kang, C.H. Kim
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
 
  Longitudinal shaping of electron beam has received much attention recently, due to its potential applications to THz generation, dielectric wakefield acceleration, improvement of FEL performance, and controlled space-charge modulation. Using a set of alpha-BBO crystals, shaping of laser pulse and electron bunch on the order of ps is tested at the Injector Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). In particular, we investigate the response of the longitudinally-modulated beam to a dechirper, which is a vacuum chamber of two corrugated, metallic plates. Initial experimental results will be presented with analytical theory and numerical simulations.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP061 Numerical and Experimental Studies on Electron Beam Properties from Asymmetric RF-gun 698
 
  • S. Rimjaem, N. Chaisueb, J. Saisut, C. Thongbai, W. Thongpakdi
    Chiang Mai University, Chiang Mai, Thailand
  • N. Kangrang
    FNRF, Chiang Mai, Thailand
  • E. Kongmon, K. Kosaentor, P. Wichaisirimongkol
    IST, Chiang Mai, Thailand
 
  Funding: This work has been supported by the CMU Junior Research Fellowship Program, and the Department of Physics and Materials Science, Faculty of Science, Chiang Mai University.
The electron linear accelerator at the Plasma and Beam Physics Research Facility (PBP-CMU Linac), Chiang Mai University, Thailand, is used to produce femtosecond electron bunches for generation of THz radiation. The main components of the PBP-CMU Linac are a thermionic RF electron gun, an alpha magnet, a travelling wave linac structure, quadrupole lens, steering magnets, and various diagnostic components. The RF-gun consists of a 1.6 S-band standing wave structure and a side-coupling cavity. The 2856 MHz RF wave is transmitted from the klystron to the gun through a rectangular waveguide input-port. Both the RF input-port and the side-coupling cavity cause an asymmetric electromagnetic field distribution inside the gun. The electron beam from the RF-gun has asymmetric transverse shape with an emittance value, which is higher than the beam from the symmetric fields. The problems are increased when the beam is transported from the gun through the whole accelerator system. Beam dynamic simulations are performed to investigate the effect of the asymmetric fields on the electron properties by using the codes PARMELA and ELEGANT. An integrated electron beam diagnostic station to measure the beam properties will be installed in the system to investigate these effects. Results from numerical and experimental studies are reported in this contribution.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP062 Study on Undulator Radiation from Femtosecond Electron Bunches 702
 
  • N. Chaisueb, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
 
  Funding: This work has been supported by the CMU Junior Research Fellowship Program, the Department of Physics and Material Science, Faculty of science, Chiang Mai University, and SAST Scholarship.
Linac based terahertz (THz) source at the Plasma and Beam Physics (PBP) Research Facility, Chiang Mai University, consists of a thermionic RF electron gun, an alpha magnet for magnetic bunch compressor, a travelling wave S-band accelerating structure for post acceleration, and various beam diagnostic instruments. The PBP-CMU linac can produce relativistic femtosecond electron bunches, which are used to generate coherent THz radiation via transition radiation technique. To increase the radiation intensity, an electromagnetic undulator will be added in the beam transport line. The designed electromagnetic undulator has 40.5 periods with a period length of 56 mm and a pole gap of 15 mm. Numerical calculation result shows that the brightness of the undulator radiation, which is produced from electron bunches with an energy of 10 MeV, a peak current of 300 A, and an effective bunch length of 120 fs, is about 10 thousand times higher than the brightness of the transition radiation. This study investigates the dependence of the electron beam energy, electron bunch charge, and electron bunch length on the coherent undulator radiation by using the PARMELA code. The numerical simulation and procedure to generate the undulator radiation in the terahertz regime by using femtosecond electron bunches produced at the PBP research facility is reported and discussed in this contribution.
The authors would like to acknowledge the financial support to participate this conference by the Department of Physics and Material Science and the Graduate School, Chiang Mai University.
 
poster icon Poster WEP062 [8.172 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP067 Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility 707
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the US Department of Energy under contract DE-SC0011831 with Northern Illinois University.
Cascaded longitudinal space-charge amplifier (LSCA) have been proposed as a mechanism to generate density modulation over broadband.[1] The scheme was recently demonstrated in the optical regime and confirmed the production of broadband optical radiation.[2] In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab's Advanced Superconducting Test Accelerator (ASTA) to produce broadband ultraviolet radiation. Our studies are carried using a three-dimensional space charge algorithm coupled with ELEGANT [3] and based on a tree-based space-charge algorithm (see details in Ref. [4])
[1] M. Dohlus, PRSTAB, 14 090702 (2011).
[2] A. Marinelli, PRL, 110 264802 (2013).
[3] M. Borland, Advanced Photon Source, LS-287, 2000.
[4] A. Halavanau, Proc. IPAC15, TUPMA007 (2015).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP069 Minimization of the Emittance Growth Induced by Coherent Synchrotron Radiation in Arc Compressor 711
 
  • X.Y. Huang, X. Cui, Y. Jiao, G. Xu
    IHEP, Beijing, People's Republic of China
 
  Funding: Supported by National Natural Science Foundation of China (11475202, 11405187).
Coherent synchrotron radiation (CSR) is a critical issue when electron bunches with short bunch length and high peak current transporting through a bending system in high-brightness light sources and linear colliders. For example, a high peak current of electron beam can be achieved by using magnetic bunch compressor, however, CSR induced transverse emittance growth will limit the performance of bunch compressor. In this paper, based on our 'two-dimensional point-kick analysis', an arc compressor with high compression factor is studied. Through analytical and numerical research, an easy optics design technique is introduced that could minimize the emittance dilution within this compressor. It is demonstrated that the strong compression of bunch length and the transverse emittance preservation can be achieved at the same time.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP070 Start-to-End Simulation of the LCLS-II Beam Delivery System with Real Number of Electrons 714
 
  • J. Qiang, C.E. Mitchell, C. F. Papadopoulos, M. Venturini
    LBNL, Berkeley, California, USA
  • Y. Ding, P. Emma, Z. Huang, G. Marcus, Y. Nosochkov, T.O. Raubenheimer, L. Wang, M. Woodley
    SLAC, Menlo Park, California, USA
 
  The LCLS-II as a next generation high repetition rate FEL based X-ray light source will enable significant scientific discoveries. In this paper, we report on the progress in the design of the accelerator beam delivery system through start-to-end simulations. We will present simulation results for three cases, 20 pC, 100 pC and 300 pC that are transported through the hard X-ray line and the soft X-ray line for FEL radiation.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP073 Dispersion of Correlated Energy Spread Electron Beams in the Free Electron Laser 718
 
  • L.T. Campbell
    USTRAT/SUPA, Glasgow, United Kingdom
  • A.R. Maier
    CFEL, Hamburg, Germany
 
  The effect of a correlated linear energy chirp in the electron beam in the FEL, and how to compensate for its effects by using an appropriate linear taper of the undulator magnetic field have previously been investigated considering relatively small chirps. In the following, it is shown that larger linear energy chirps, such as those found in beams produced by laser-plasma accelerators, exhibit dispersive effects in the undulator, and require a non-linear taper on the undulator field to properly optimise.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)