Ultra-low Charge, Ultra-high Brightness Frontiers of Photoinjectors: Challenges and Perspectives

Renkai Li

37th FEL Conference (FEL 2015) August 25, 2015 - Daejeon, Korea

Outline

- Pursuing better beams FEL, UED/UEM
- Generation of higher brightness
- Characterizing these extreme beams
- Better machines and new science
- Summary and outlook

Pushing Science frontiers with electron beams

Pushing Science frontiers with electron beams

Pushing Science frontiers with electron beams

e-beams for XFEL > ~10 GeV beam energy $\Delta E/E \sim 1 \times 10^{-4}$ 108-109 *e*- per pulse kA beam current extremely short - 10 fs flat photocathode

control the collective effects

e-beams for TEM/STEM < ~300 keV beam energy $\Delta E/E < 1 \times 10^{-6}$ 10⁶-10⁹ *e*- per image pA beam current extremely narrow - 50 pm tip field-emission source optics, with aberration correction

FEL requirement on e-beams

SLAC

SASE FEL: high gain & trans. coherence

LCLS transverse profile at

1D gain length
$$L_G^{\text{1D}} = \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

Saturation power $P_{\text{sat}} \approx \rho P_{\text{e}}$

Pierce
$$\rho = \left[\frac{1}{16}\frac{I_e}{I_A}\frac{K_0^2[\mathrm{JJ}]^2}{\gamma_0^3\sigma_x^2k_u^2}\right]^{1/3}$$

Geometric $\frac{\epsilon_n}{\gamma_0} \leqslant \frac{\lambda}{4\pi}$

energy spread $\sigma_{\eta} \ll \rho$

Z. Huang and K.-J. Kim, PRSTAB 10, 034801 (2007)

FEL requirement on e-beams

SLAC

SASE FEL: high gain & trans. coherence

LCLS transverse profile at

1D gain length
$$L_G^{\text{1D}} = \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

Saturation power $P_{\text{sat}} \approx \rho P_{\text{e}}$

Pierce
$$\rho = \left[\frac{1}{16} \frac{I_e K_0^2 [\text{JJ}]^2}{\gamma_0^3 \sigma_x^2 k_u^2}\right]^{1/3}$$

Geometric emittance

$$\epsilon_n \leqslant \frac{\lambda}{4\pi}$$

energy spread $\sigma_{\eta} \ll \rho$

Photoinjectors deliver required e-beams for FEL

Cut-away view of the LCLS gun. Courtesy of E. Jongewaard

Z. Huang and K.-J. Kim, PRSTAB 10, 034801 (2007)

RF photoinjector-based MeV UED and UEM

- ultralow charge (< ~1 pC)
- ultralow emittance (< ~10 nm)
- directly serve ultrafast science
- R&D at SLAC, UCLA, Tsinghua, Osaka, BNL, DESY, LBL, Shanghai Jiaotong, SFTC, KAERI

X. J. Wang et al., PAC'03, p. 420. P. Musumeci and R. K. Li, in ICFA Newsletter No. 59 (2013)

Beam brightness from photoinjectors

SLAC

• 5-D normalized beam brightness

$$B_{5D} = \frac{I}{\epsilon_{n,x}\epsilon_{n,y}}$$

- Most XFELs driven by photoinjectors
- Photoinjectors deliver excellent transverse emittance, as well as longitudinal emittance
- Most facilities operate at 0.1 0.5 nC
- Higher B_{5D} at lower charge, but beam diagnosis becomes more challenging
- Many new techniques for low charge (<1 pC) developed for UED and UEM

S. Di Mitri and M. Cornacchia, Phys. Rep. 539, 1 (2014).

emittance of low charge electron beams

SLAC

- Project and slice emittance
- $\epsilon_{\rm rf}$, $\epsilon_{\rm optics}$, $\epsilon_{\rm sc}$, $\epsilon_{\rm intri}$, ...

B. E. Carlsten, NIMA 285, 313 (1989) Serafini & Rosenzweig, PRE 55, 7565 (1997)

• $\epsilon_{
m rf}$, mainly projected emittance, is much reduced for smaller beam dimensions

$$\epsilon_{\mathrm{rf}}=rac{eE_0}{2\sqrt{2}mc^2}\sigma_x^2\sigma_\phi^2,\quad \langle\phi\rangle=90^\circ$$
 K.-J. Kim, NIMA 275, 201 (1989)

- $\epsilon_{
 m optics}$ chromatic and spherical aberrations
 - Chromatic: different x x' slope for different slice energy
 - Spherical: nonlinearity in slice x x' distribution might be corrected

An Engineering Guide to Photoinjectors, T. Rao and D. H. Dowell, Eds.

Beam shaping – low charge but still high charge density

Uniformly filled ellipsoidal is ideal – linear SC forces and phase-space

• Practical and robust in experiment – *transverse shaping of ultrashort laser*

P. Musumeci et al., PRL 100, 244801 (2008)

Cigar-shape beams

- Pancake regime: relatively large initial spot size and intrinsic emittance
- Cigar regime an alternative way to generate 3D ellipsoid beam
 - Tiny laser spot (10s of um) on the cathode, hence very low $\epsilon_{ ext{intri}}$
 - Long (several ps), parabolic laser temporal profile
 - Transverse SC expansion creates ellipsoidal beam, again

R. K. Li et al., PRST-AB 15, 090702 (2012)

Ideal regime for ultralow charge, nm-emittance beams!

Space charge limit in emission

pancake

Maximum surface charge density set by the extraction field

$$\frac{Q}{\pi R^2} < \epsilon_0 E_0$$

Courtesy of P. Musumeci

 $R > \Delta z_e$ pancake regime

 $R < \Delta z_e$ cigar regime

Finite transverse dimensions
 Infinite transverse dimensions

cigar

Only charge within a radius distance from the cathode contributes to space charge field

$$Q = J_{\rm CL} \pi R^2 \propto \frac{V^{\frac{3}{2}}}{d^2} R^2 \propto (E_0 R)^{\frac{3}{2}}$$

D. Filippetto et al., PRST-AB 17, 024201 (2014)

Collimation can improve the brightness

SLAC

 Part of the beam (always) has higher phase-space density

 outside electrons help maintain the high density in the core

'Good' and 'bad' electrons? The bad ones make the others better.

Collimation can improve the brightness

SLAC

 Part of the beam (always) has higher phase-space density

 outside electrons help maintain the high density in the core

'Good' and 'bad' electrons? The bad ones make the others better.

Higher extraction field - new gun geometry

SLAC

- Brightness depends on E_0 : $B_{5D} \propto E_0$ (pancake) and $B_{5D} \propto E_0^{3/2}$ (cigar)
- Higher E_0 allows more emission, also suppresses SC induced emittance growth

- 1.6 cell to 1.4 cell shifts the launching phase from 30° to 70°. Note sin(70°)=0.94.
- E₀ roughly x2 times higher

R. K. Li and P. Musumeci, PRApplied 2, 024003 (2014)

Intrinsic emittance

Thermal emittance $\epsilon_n = \sigma_x \sqrt{\frac{\hbar\omega - \phi_{\rm eff}}{3mc^2}}$ Quantum efficiency ${\rm QE}(\omega) \propto (\hbar\omega - \phi_{\rm eff})^2$ Minimzing $\hbar\omega - \phi_{\rm eff}$ can reduce ϵ_n , but at the cost of QE

Dowell and Schmerge, PRST-AB 12, 074201 (2009)

Cu: 0.35 mm-mrad/mm w/ mid-10⁻⁵ QE @ PSI

Prat, PRST-AB 18, 063401 (2015)

Cs₃Sb: 0.21 mm-mrad/mm w/ 7×10⁻⁵ QE @ Cornell

Cultrera, arXiv:1504.05920

- Effects of surface roughness
- Tuning extraction field and photon energy independently
- Limitation due to laser damage of the cathode and demand on laser power
- Explore more exotic emission mechanism
- Don't forget the temporal response of the photoemission

Measure nanometer emittance

SLAC

Knife-edge, single-shot emittance measurement

R. K. Li et al., PRST-AB 15, 090702 (2012) Relies on high spatial-resolution measurement of low charge beams

- Low charge ≠ low charge density
- SC effects should be carefully evaluated

$$R_0 = \frac{I\sigma_0^2}{2I_0\gamma\epsilon_n^2}$$

S. G. Anderson et al., PRST-AB 5, 014201 (2002)

Solenoid scan using very low charge

Imaging single electrons

SLAC

Optimized phosphor screen + high collection optics + Electron Multiplying CCD (EMCCD). Achieved Single electron detection capability!

R. K. Li et al., J. Appl. Phys. 110, 074512 (2011)

CMOS direct detection detector

Single e- sensitivity

- Excellent PSF (<10 um)
- Fast readout (>400 fps)
- Radiation hard (yrs lifetime) at 300 keV
- Commercialized for electron microscope

Revolutionary impact on cryo-EM

Y. G. Shi et al., 10.1126/science.aac7629

Courtesy of D. Contarato & P. Denes

Femtosecond bunch length measurement

SLAC

C. Behrens et al., Nature Commun. 5, 3762 (2014)

T. J. Maxwell et al., PRL 111, 184801 (2013).

How to measure only 5 MeV, <10 fs beams?

- 10 fs UED, external injection
- Beam is only short within a few cm

- Use Bolometer
- Strong dependence on transverse spot size
- Can be limited by rf phase and amplitude jitter

R. K. Li et al., JAP 110, 074512 (2011)

X. H. Lu et al., PRST-AB 8, 032802 (2θ15)

Time-of-Arrival monitor

SLAC

Bunch arrival-time monitor (BAM)

A. Angelovski et al., PRST-AB18, 012801 (2015)

- sub-10 fs for 20 pC beams (FLASH, ELBE, and SwissFEL), similar BAM at LCLS
- Cone-shape can be optimized for lower beam charge (REGAE)
- But, there is extra jitter due to the regen and user laser

Optical cross-correlation

- Direct measurement between pump (optical laser) and probe (x-ray).
- Same principle could work for ebeams. (Cesar & Musumeci et al.)

Using ultralow charge beams for FELs

FELs enabled by a few pC, <30 nm-rad, kA electron beams

- Single-spike SASE $\sigma_z \sim 2L_c$: sub-fs pulses
- Compact FELs

1 pC-case studies

Contents lists available at Science

Nuclear Instruments and Physics Research

journal homepage: www.elsevier.com

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Development of ultra-short pulse, single coherent spike for SASE X-ray FELs S. Reiche*, P. Musumeci, C. Pellegrini, I.B. Rosenzweig

Generation of ultra-short, high brightness elect SASE FEL operation

UCLA, Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095, USA

J.B. Rosenzweig a,*, D. Alesini c, G. Andonian A, M. Boscolo C, M. Dunning L. Faillace b,c, M. Ferrario C, A. Fukusawa^a, L. Giannessi^e, E. Hemsing^a, G. Marcus^a, A. Marinelli^{b,c}, P. Musumeci^a, B. O'Shea^a, L. Palumbo^{b,c}, C. Pellegrini^a, V. Petrillo^d, S. Reiche^a, C. Ronsivalle^e, B. Spataro^c, C. Vaccarezza^c

- a UCLA Department of Physics and Astronomy, 405 Hilgard Ave., Los Angeles, CA 90095, USA
- ^b Universita degli Studi di Roma La Sapienza, Via Antonia Scarpa 14, Rome 00161, Italy
- c INFN-LNF, via E. Fermi, 40-00044 Frascati, Rome, Italy
- d INFN-Milano, Via Celoria 16, 20133 Milan, Italy
- e ENEA, via E. Fermi, 00044 Frascati, Rome, Italy

Y. Ding's talk, TUA01, Generating Femtosecond to Sub-Femtosecond X-Ray Pulses at Free Electron Lasers

- more challenging diagnostics and beam control (especially at existing facilities)
- Consider collective effects: wakefields, LSC, CSR ($\delta_{\rm CSR} \propto I\sigma_z^{-1/3}$)

- Many of the works done at UCLA with P. Musumeci
- Colleagues at SLAC, UCLA, and Tsinghua University
- Y. Ding, V. Dolgashev, P. Emma, D. Filippetto, J. Frisch, Z. Huang, T. Maxwell, T. Raubenheimer, J. Rosenzweig, J. Schmerge, C. X. Tang, T. Vecchione, L. Wang, X. J. Wang, and F. Zhou for helpful discussions
- Work supported by U.S. Department of Energy

Summary and outlook

- We can produce ultrahigh brightness with ultralow beam charge
- Charge density still high require beam shaping and collimation
- Control the photoemission process emittance and current density
- New techniques/detectors to measure these beams both in x-y and in time
- Energy spread not discussed here but critical for micro-bunching and harmonic-generation for FELs, and chromatic effects in UEMs
- Merging FEL and TEM beams ultrafast, ultra-narrow and ultra-stable
- High brightness, high precision frontier of photoinjectors
- Understand and control each e- nicely, and use it for good science.

Thank you for your attention!