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ABSTRACT 
As is known, microbunching instability (MBI) has been one of the most challenging issues with the designs of magnetic chicanes for short-wavelength free-electron lasers or linear colliders, as well as those of 
transport lines for recirculating or energy recovery linac machines. To more accurately quantify MBI in a single-pass system and for more complete analyses, we further extend and continue to increase the 
capabilities of our previously developed linear Vlasov solver [1] to incorporate more relevant impedance models into the code, including transient and steady-state free-space and/or shielding coherent synchrotron 
radiation (CSR) impedances, the longitudinal space charge (LSC) impedances, and the linac geometric impedances with extending the existing formulation to include beam acceleration [2]. Then, we self-consistently 
solve the linearized Vlasov equation for microbunching gain amplification factor. With application of this code to a beamline lattice of transport arc [3] with a section of linac upstream, the resultant gain functions 
and spectra are presented and some results are compared with particle tracking simulation by ELEGANT [4]. We also discuss some underlying physics with inclusion of these collective effects and the limitation of 
the existing formulation. It is anticipated that this more thorough analysis can further improve the understanding of MBI mechanisms and shed light on how to suppress or compensate MBI effects in lattice designs.  

 
RESULTS OF SEMI-ANALYTICAL VLASOV SOLVER 

 
 
 

Ø  Example: 1.3 GeV Linac-Arc [3] 

SUMMARY 

Ø  Developed linear Vlasov solver which is applicable for 
ü  general linear lattice (from ELEGANT) 
ü  including beam acceleration (or, deceleration) 
ü  single-pass or multi-pass beamline (e.g. ERL or recirculating machines) 

Ø  Relevant collective effects are included 
ü  CSR effects (steady-state, entrance/exit transients, free-space or parallel-plate shielding) 
ü  LSC effect 
ü  linac geometric effect 

Ø  Demonstrated a linac-arc example for MBI gain estimation 
Ø  Non-uniformity bunch profile è local bunch compression/decompression  
                                           è MBI gain reduced at large R56 
Ø  [CSR + LSC] effects contribute a significant amount of MBI gain 
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COLLECTIVE EFFECTS INCLUDED 
  

Ø Free-space CSR Effect (1-D) 
q Steady-state (non-ultrarelativistic [7] & 

ultrarelativistic [8, 9]) 
q Entrance transient [10, 11] 
q Exit transient [12] 

Ø Parallel-plate shielding CSR Effect 
q Parallel-plate model [13, 14] 

Ø Free-space LSC Effect [15, 16] 
q On-axis model 
q Averaged model 

Ø Linac Geometric Effect [17, 18, 19] 
    

NUMERICAL METHODS 
  

Ø Linear Vlasov solver [2,5,6] 
    

R̂56 (s '→ s) = R̂55 (s ')R̂56 (s)− R̂55 (s)R̂56 (s ')+ R̂51(s ')R̂52 (s)− R̂51(s)R̂52 (s ')+ R̂53(s ')R̂54 (s)− R̂53(s)R̂54 (s ')

R̂5i (s, s ') = C(s)R̂5i (s)−C(s ')R̂5i (s ') C(s) = 1
R̂55 (s)− h0R̂56 (s)

(gain function) 

(gain spectrum) 

GUI: volterra_mat_v3.0    !
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CSR + LSC + linac geom. wake
CSR
LSC
LSC + linac geom. wake

δ i = hzi + qzi
2

heff (zi ) ≡ − ∂δ i

∂zi
= −2qzi →

< 0,  for bunch tail zi < 0( )
> 0,  for bunch head zi > 0( )

⎧
⎨
⎪

⎩⎪  

C(s, zi ) =
1

R55 (s)
≤1
! − heff (zi )R56 (s)

→
>1 (compressed),  for bunch head & R56 (s) > 0
<1 (de-compressed),  for bunch tail & R56 (s) > 0

⎧
⎨
⎩

LSC-induced microbunching gain function LSC-induced microbunching gain spectrum 

CSR-induced microbunching gain function CSR-induced microbunching gain spectrum 

Name Example 1 
(large R56) 

Unit 

Beam energy (at linac entrance) 50 MeV 

Beam energy (at linac exit) 1.11 GeV 

Peak bunch current  88 A 

Norm. emittance 0.3 µm 

βx0 18 m 

αx0 -3.6 

Slice energy spread 3 × 10-4 

Dispersion (blue) and momentum 
compaction (green) function of the 
example linac-arc lattice.  

Table 1: Initial beam and Twiss parameters. 

Longitudinal phase-space distribution at s = 410 m 
Microbunching gain spectra with various combinations 
of collective effects. 

Ø  Discussion on bulk bunch non-uniformity: 

Step-by-step guide user manual: 
JLAB-TN-15-019 

Bunch current density 

(head) 


