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The microbunching instability (uBI):
pervasive and unwanted
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uUBI in action:
LCLS beam measurements*
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*D. Ratner, et al., PRST-AB, 18 030704 (2015)

The uBI signature: micro E/z correlations,
energy spread growth

Consequences: reduced radiation output
and/or degradation of radiation spectrum

First identified by M. Borland, predicted by
E. Saldin, et al., early 2000s

Of concern in all x-ray FELs =» Laser Heater

A potential problem for LCLS-II
B Characterize instability
E Look for remedies that do not sacrifice beam
brightness



Two mechanisms drive the instability

F Longitudinal self-fields + longitudinal slippage from R,
(The conventional and prevalent mechanism)

E Transverse self-fields + longitudinal slippage from R:,

(New !)

Focus on shot-noise seeded instability
E Effect of non-uniformities in photo-cathode laser?



Cartoon for the ‘conventional’
mechanism of uBI

Dispersion turns energy modulation

into larger charge-density ripple
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Collective effects turn charge-density
ripple into energy modulation




The not-so conventional mechanism:
e.g. transport through dogleg achromat

beam as a line charge
(xo = 0, w/ energy modulation,
uniform current,
discrete angular spread)
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The not-so conventional mechanism:
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The not-so conventional mechanism:
e.g. transport through dogleg achromat

beam as a line charge
(xo = 0, w/ energy modulation,
uniform current,
discrete angular spread)
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The not-so conventional mechanism:
e.g. transport through dogleg achromat .

(xo = 0, w/ energy modulation,
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The not-so conventional mechanism:
e.g. transport through dogleg achromat .

beam as a line charge
(xo = 0, w/ energy modulation,
uniform current,
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The not-so conventional mechanism:
e.g. transport through dogleg achromat

beam as a line charge
(xo = 0, w/ energy modulation,
uniform current,
discrete angular spread)
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The not-so conventional mechanism:
e.g. transport through dogleg achromat

(xo = 0, w/ energy modulation,
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The tools of the trade for uBI analysis

F High fidelity macroparticle simulations
(code IMPACT, by J. Qiang et al., LBNL )

B Efficient 3D Poisson solver for space-charge fields

B 5% order single-particle dynamics + 1D CSR, RF and RW wakefields

B Efficient parallelization; access to LBNL NERSC computing resources (1000+
processor runs)

B One electron, One macroparticle

B For this study: track idealized beam distributions to highlight uBI effects
through various critical machine sections (excluding the injector).

E (Semi-)analytical linear models

B Impedance-based or otherwise simplified representation of space-charge
fields.

14



Not a boring machine:
_the many uBI hot-spots along LCLS-Il

LCLS-Il Layout

Schematic (not to scale) by P. Emma
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Not a boring machine:
the many uBI hot-spots along LCLS-II

LCLS-Il Layout

1.7km | _ 0.9km

Schematic (not to scale) by P. Emma
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BC Chicanes entrance of Long
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bunching Heater
Anomalous

heating

dispersion Dispersion

B Focus on transport to HXR FEL (baseline 100 pC bunches) 10



Warming up the simulation muscles:
track beam from BC2 to exit of DL1

E Flat-top with nominal full
compressed current I = 9004
B Track w/ longitudinal space charge
only
E Compare with linear theory
E LSC-Impedance

exitBC2 exitBC2
2000 T . — 10 —— .
o = 0.45MeV

1500 5
Z

< 1000, Io=900A = 0
- m
<
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0 current profile ~10 long. phase space
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Warming up the simulation muscles:
track beam from BC2 to exit of DL1

exitBC2
2000 T — T

1500

<1000 Ip=900A

AE (MeV)
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0 current profile
-6 -4 -2 0 2 4 6

z (pm)

exitBC2

or = 0.45MeV

Flat-top with nominal full
compressed current I = 9004
Track w/ longitudinal space charge
only

Compare with linear theory
E LSC-Impedance

¥ Gain= |b;/b;]
E |b;| =1 /VN (shot noise)
E Good cross-validation
simulation/theory

B Theory includes effect from plasma

oscillations in L3

E peak gain @ sub-um

gain

Instability gain: simulations vs. linear model
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Follow the beam to the FEL and find spectacular

T

kicker

Start simulation with smooth beam model at exit of BC2

Beam as observed at HXU FEL
is strongly microbunched

exitBC2 exitBC2
2000 P —— S
O = 0.45MeV
1500 5
Io = 9004 %
<1000 "0 " Z 0
- o
<
500 -5
. current profile 10 long. phase space*
-6 -4 -2 0 2 4 -6 -4 -2 0 2 4
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F flat-top model beam with gaussian uncorrelated energy spread
F  represents short section of @ = 100pC bunch (laser heater on.)

E Strong microbunching on sub-um scale

* Correlated energy chirp removed
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What to do?

Introduce local cancellation of R

LH BC1 BC2

093 m
LCLSA 0.65m

Linac

* Correlated energy chirp removed




What to do?
Introduce local cancellation of Rz,

—0
093 m
LH  BCt BC2 _ LcLs4 065m y
i 1 ' Linac '
lDLl o 250m
/ kicker ~wall "
Ree — 100pm — Beam as observed at HXU FEL
% chicanes for local shows little microbunching
Rse = —100um Rs¢ = 100um compensation of 10
/ Rs6 here as well o = 0.53MeV
2
Insert small chicanes » R =—100um S o
for local 0
compensation of Rsq 4 -5
0 long. phase space*
~15-1.0-05 00 05 1.0 15
: : z (pm)
F Method appears to be highly effective 2000
E Delaying compression to exit of bypass could also be a 1500
way to reduce microbunching but has drawbacks < , |
g 9 210 ettt
. . ) 500 :
F Is everything all right, then ? Not quite ... ! current profile l
~15-1.0-05 00 05 1.0 15
z (pm)

* Correlated energy chirp removed




The uBI strikes back ...

LH 0£=6 keV

Compensating Chicanes (CCs) are ON
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The uBI strikes back ...

T(A)
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The uBI strikes back ...

T(A)

LH 6 =6 keV Compensating Chicanes (CCs) are ON
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F Quite a bit of gain is still happening through the bypass line.
E What causes this gain?
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A close look at the dynamics through
dogleg DL1 shows the effect from TSC

DL1 Compensating Chicanes
are ON

BC2

DL1




A close look at the dynamics through
dogleg DL1 shows the effect from TSC
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A close look at the dynamics through
dogleg DL1 shows the effect from TSC
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M. Venturini, et al., PRST-AB 18, 054401 (2015) 27



Instructive aside:
why is there any bunching at 1 um @ BC2 exit?

More accurate account of
Laser Heater effect on energy density

Beam model w/ gauss distribution

in slice energy (too crude ...)
) I TEZZ) o - --i-
Ly, = L Uum A im
1 —
/ % / 7\ ?g\s.. | 2
R y _/I \, = _,I ﬁ I \
J
/ |
Eﬂ:ll ,,E@ BC1 | = | BC2
| / 1) Y I
0.2 0.5 1.0 2.0 5.0 10.0 20.0 0.2 0.5 1.0 2.0 5.0 10.0 20.0
A (um) [compressed] A (um) [compressed]
Expected peak gain @ 4, = 27|R56|05
LHog = 6 keV B Gain scales as ~J; (ak) at large k*
E Shorter wavelength modes pass through

REEY = 55mm; 081 = 2.4 x 107>
REE? = 38mm; 082 = 2.2 x 107>
Machine design strategy aiming at minimizing overlap between gain curves?
Freedom to set relevant parameters (Rs4’s, BC energies, etc.) is limited 28
*7 Huang, et al., PRST-AB, 2004



It gets better:

Optimum tuning of compensating chicanes

B Exact cancellation of Rgg by CCs minimizes LSC

effects.
B With different CC setting we can get LSC- and

TSC-effects to offset each other? Yes

Microbunching @FEL vs. CC |Rz¢]

40 0.5 1,0 1.5 20
l : r increasing CC |Rxg|

L Exact Rsg
No CCs compensation

> I

|Rs6 lcc

|Rs6 | DL ~dipole(s)



It gets better:
Optimum tuning of compensating chicanes

B Exact cancellation of Rgg by CCs minimizes LSC o ] Exact
effects. 1200 R5¢compensation
B With different CC setting we can get LSC-and | ""
TSC-effects to offset each other? Yes = 00 / !
400
\
. . 200 »
) 15Mlcrobunchmg @FEL vs. CC |R¢| 02/0 T
. z (um)

ntorlIYVD |
Overcompensating
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T i
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No CCs compensation No T -..-effect here (see next slide)




Not the end of the story yet: Bunching from
nonlinear momentum compaction Tz¢¢
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enterDL1:: E=4000 MeV

-20 -10 0 10 20 30
z (pm)




Not the end of the story yet: Bunching from
nonlinear momentum compaction Tz

enterDL1:: E=4000 MeV E At entrance of DL1 bunch has still a
substantial energy chirp left over

from compression
E  ‘dechirping’ will be completed by
resistive-wall wake in bypass line

1000
800
600 -
400 i

<
energy chirp + dogleg T5g6 = ~0.02 —0.01 0.00 0.01 0.02
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< 600
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E Away from bunch center effective — 400
200 N

Rgfff is comparable in magnitude to 0
DL1 R ~0.02 —0.01 0.00 001 0.02
56 z (mm)




Optimum setting for Laser Heater,
minimum energy spread

Energy spread @FEL vs. energy spread @LH

= 1.8
LTI-‘ 1.0} @ r=1 (exact Rsg compensation by CCs)
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= 0 o &
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LH setting o (keV)

Note: o @FEL is the projected rms spread in the beam core
[-12um, 20um] upon removal of the (nonlinear) energy chirp.



Optimum setting for Laser Heater,

minimum energy spread

E Confirm benefit of
Rzcovercompensation over range

of LH setting
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Note: o @FEL is the projected rms spread in the beam core
[-12um, 20um] upon removal of the (nonlinear) energy chirp.



Summary

LCLS-Il as a fertile ground for the uBI

Long transport lines between Linac and FELs have shown
potential for large amplification of the instability

New mechanism: microbunching generated by Transverse Space

Charge (TSC) in high-brightness beams
B Quite significant for LCLS-II

Compensating Chicanes have been found to represent an

effective remedy
B Properly tuned they can be used to offset LSC and TSC-induced bunching
against each other.

Can we trust the predictions from our models?

B Benchmarking against LCLS measurements are underway. 35
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