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Abstract
The effect of a correlated linear energy chirp in the elec-

tron beam in the FEL, and how to compensate for its effects

by using an appropriate linear taper of the undulator mag-

netic field have previously been investigated considering

relatively small chirps. In the following, it is shown that

larger linear energy chirps, such as those found in beams

produced by laser-plasma accelerators, exhibit dispersive

effects in the undulator, and require a non-linear taper on

the undulator field to properly optimise.

INTRODUCTION
In the FEL, it is well known that an energy spread corre-

lated with the temporal bunch coordinate, or an energy chirp,

in the electron beam can be compensated for by using an

appropriate taper of the undulator magnetic field [1]. For the

case of a linear energy chirp, it was previously derived that

a linear taper is necessary, with gradient proportional to the

gradient of the chirp, and this result was derived considering

small variations in energy due to the chirp.

However, with the increased interest in novel accelera-

tor concepts as FEL drivers, e.g. use of plasma accelera-
tors [2–4] or the synthesis of broadband beams from linacs

as in [5], the case of larger chirps has become more relevant.

In this regime, dispersive effects can no longer be ignored,

and the beam current and energy spread are a function of

propagation distance through the undulator. Consequently,

the gain length of the FEL is then itself a function of dis-

tance. In addition, dispersion due to the chirp will cause

the gradient of the chirp to vary upon propagation, meaning

that the taper necessary to compensate the chirp is also a

function of undulator propagation length, and will not be

linear.

FEL codes which employ ‘slices’ with periodic bound-

aries to model the electron beam [6–9] cannot model this

dispersion properly, as the electrons cannot travel between

slices, and so cannot model any current redistribution

through the undulator. In addition, the Slowly Varying En-

velope Approximation (SVEA) [10] means that they cannot

model a broadband range of frequencies produced by large

energy differences due to the chirp and/or a large taper. So-

called ‘unaveraged’ FEL codes [11–15] are free of these

limitations.

In the following, a general case of a large chirp which can

be fully compensated with a taper is identified, which re-

duces to the previous, well known case only when dispersive

effects are neglected. This simple case allows an analytic

prediction for the variation in the gain length at a fixed fre-

quency, which is compared to results from the unaveraged

FEL code Puffin [11].

REVISITING THEORY IN SCALED
NOTATION

Using the scaled notation of [11], the propagation distance

through the undulator is scaled to the 1D gain length, and

the temporal coordinate in the stationary radiation frame is

scaled to the 1D cooperation length, so that, respectively,

z̄ =
z

Lg
(1)

z̄2 =
ct − z

Lc
. (2)

The scaled axial velocity of the jth electron is defined as

p2 j =
dz̄2 j
dz̄
=
βzr

1 − βzr
1 − βz j
βz j

, (3)

where βz j = vz j/c is the z velocity in the undulator nor-
malised to the speed of light. The subscript r denotes some
reference velocity, which is usually sensible to take as the

mean velocity of the beam, but which in general may be any

velocity, as the model presented in [11] allows a broadband

description of both the radiation field and the electron ener-

gies. The ‘r’ denotes the resonant condition for this reference

velocity, so that the reference resonant frequency is denoted

by

kr =
βzr

1 − βzr kw, (4)

and the electrons with p2 j = 1 are resonant with the reference
frequency.

Tapering is achieved by varying α( z̄) = āw ( z̄)/āw0,

which is the relative change in the magnetic undulator field

from its initial value, as defined in [16].

The gradient of an electron beam chirp may then be de-

fined as

dp2
dz̄2

≈ − 2

γr

dγ
dz̄2
, (5)

assuming small deviations in energy, a small chirp so that

dp2
dz̄2

� 1, (6)
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Figure 1: Showing the manipulation of p2 by variation of the
undulator magnetic field α. By altering the magnetic field,
one may guide the blue electron to the correct value of p2 to
be resonant with the radiation in the blue slice indicated.

and small deviations in the undulator magnetic field, α ≈ 1.

Rewriting the formula for the taper required to compensate

the detuning effect [1] from a chirp in the above notation,

we obtain

dα
dz̄
= −1 + ā2

w0

ā2
w0

1

γr

dγ
dz̄2
. (7)

DISPERSIVE AND BROADBAND
EFFECTS

To take into account dispersive effects, it is convenient

to describe the system using the p2 phase space. p2 j is the
scaled velocity of the jth electron, and so describes, linearly,

how the beam will disperse. It also linearly measures the

resonant frequency of the electron; from Eq. (3)

p2 j =
kr
k j
, (8)

so it is the inverse of the frequency scaled to the reference

frequency.

Relaxing the constraint on the energies - once again allow-

ing large energy changes - then Eq. (7) is no longer correct.

In the 1D limit, and using a helical wiggler, from Eq. (3),

p2 j may be defined as a function of α and γ as

p2 j ( z̄) =
γ2r

γ2j

(1 + α( z̄)2 ā2
w0

1 + ā2
w0

)
, (9)

under the approximation that γ j, γr � 1, ignoring any trans-

verse velocity spread (1D limit), and ignoring any interaction

with the radiation field (in the planar wiggler, one obtains

the equivalent expression for p2 j averaged over the wiggle
motion).

Using this definition, Figure 1 shows the effect of tapering

in the ( z̄2, p2) phase space, and shows what occurs when

Figure 2: Top: The electron beam mean energy γ as a func-
tion of scaled temporal coordinate z̄2 at the start (red) and
end (blue) of the undulator. Bottom: Same beam, now plot-

ting the mean p2 of the beam. The conversion from p2 to γ
can be obtained from Eq. (9). This is the stationary radiation

frame, and the head of the beam is to the left, so the beam

slips backwards through the field from left to right.

compensating for energy changes correlated in z̄2. The red
electron, initially in the slice indicated, emits radiation at

frequency kr before slipping back to the right. Recall this is
the stationary radiation frame, and the head of the pulse is to

the left. The blue electron, slipping back into the thin slice,

finds itself interacting with radiation it is not resonant with.

By varying, or tapering, the magnetic field α, the value of
p2 of the blue electron can be manipulated, and reduced to
the red electron’s original value of p2; therefore it is now
resonant with the radiation in the slice originally emitted by

the red electron.

Consequently, if an electron beam has an initial linear

chirp in p2, so that

dp2
dz̄2

�
�
�z̄=0
= m, (10)

then the correct magnetic field taper to ensure the beam

stays resonant should cause each electron to follow the line

of the chirp defined by m. Figure 2 shows this. It plots
the mean energy of a beam, and the corresponding mean

p2, as a function of z̄2, at the start (z̄ = 0) and end of an

undulator tapered to compensate for the chirp. The taper

may be derived from Eqs. (9) and (3), forcing dp2 j/dz̄ = m
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Figure 3: Variation in gain length as a function of distance

through the undulator due to dispersive effects. Analytic

from Eq. (19) (green) compared to numerical result from

Puffin (blue).

and dγ j/dz̄ = 0, and solving for α. The solution is found to
be:

α =
1

āw0

√
exp(mz̄)(1 + ā2

w0
) − 1, (11)

which reduces to the solution of Eq. (7) only when

|mz̄ | � 1 (12)

and

ā2
w0

1 + ā2
w0

∼ 1. (13)

For magnetic undulators, where ā2
w0

� 1, condition (13) is

satisfied.

To measure the beam compression or decompression from

this linear p2 chirp, remembering that p2 is the velocity of
the electron in z̄2, then the change in the pulse width σz2 is

dσz2

dz̄
= mσz2( z̄). (14)

From this, a stretch factor S is defined as

S( z̄) =
σz2( z̄)
σz20

= exp(mz̄). (15)

From this, it is seen that condition (12) is the limit of neg-

ligible dispersion in the undulator. This is different from

the limit of a small chirp as previously identified in Eq. (7),

which is simply

|m | � 1. (16)

For a typical SASE FEL, z̄ ≈ 10 − 15, so the dispersive con-
dition is more restrictive by around an order of magnitude.

Figure 4: Same as Figure 2, now using an initially linear

chirp in energy γ. The undulator is now tapered to try to

keep the mean electron beam p2 constant at z̄2 = 15. In

this case, so that it is resonant with the reference frequency

kr , p2 = 1 at z̄2 = 15. The undulator taper is calculated

numerically and is not linear.

MEASURING THE EFFECT ON THE
GAIN LENGTH

The dispersion has an effect on the ‘3D’ gain length [17],

as the compression/decompression will cause a change in

the peak current and energy spread of the beam. The change

in peak current can be analytically estimated very simply by

I ( z̄) =
I0( z̄ = 0)

S( z̄)
. (17)

The dispersion will also alter the localised, or ‘slice’ en-

ergy spread of the beam. However, in this case, when using

a linear chirp in p2 with the taper in Eq. (11), every elec-
tron follows the line with gradient m in the ( z̄2, p2) phase
space (see Figure 2), so the slice p2 spread does not change
despite the compression/decompression. This will cause a

corresponding variation in the transverse velocity spread,

which will affect the gain length. Here, only the 1D case is

considered, so the increased transverse spread has no effect.

The other consideration is that the gain length is different

for each frequency; here, the frequency is linearly correlated

with z̄2, and, because the taper is compensating perfectly, this
correlation is fixed across the full undulator. Again refering

to Figure 2, the mean p2 at an instantaneous point in z̄2
remains constant, but the corresponding mean energy (from
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the top plot) is very different. Picking a coordinate initially

in the center of the beam, z̄2c , with corresponding beam
energy γc , which is a function of z̄, then the normalized
energy of the electron resonant with the fixed frequency is

given by

Γ =
γc
γc0
=
(1 + α2 ā2

w0

1 + ā2
w0

)1/2
, (18)

where γc0 = γc ( z̄ = 0).
From the definition of the FEL parameter, the gain length

then varies as

Lg ( z̄) =
S( z̄)1/3Γ( z̄)
α( z̄)2/3

Lg0, (19)

where Lg0 is the gain length at z̄ = 0, and the gain length
as referred to here is the M. Xie gain length, with only the

energy spread parameter included.

A comparison of this analytic expression with the unaver-

aged FEL code Puffin is shown in Figure 3. Relevant param-

eters used are ρ = 0.01, āw0 = 2, γr = 800 and m = −0.04,
and slice spread of σγ/γr = 1%. The gain length from

Puffin is measured numerically from the radiated energy

narrowly filtered around the frequency at z̄2c , and compares
well with the analytic result. Note that the exponential gain

region is z̄ ≈ 3 to ≈ 8; before this is the startup regime where

there is no gain, and after this the system is in saturation.

There is good agreement in the exponential gain regime.

By using a linear chirp in energy, the beam compresses

asymmetrically, and it is not possible the compensate for

the detuning effect for all frequencies. Figure 4 plots the

same quantities as Figure 2, but with a linear energy chirp,

and the taper is calculated numerically to keep the reference

frequency at z̄2 = 15 interacting with electrons resonant with
it (so, in this case, keeping p2 = 1). The same can be done
for any frequency emitted, so it is possible to preferentially

compensate for certain frequencies, but it is not possible to

properly compensate for all frequencies.

However, this does not necessarily result in a higher power

at that frequency. Other factors, such as the energy and

slice spread, change differently for each frequency. Only the

detuning effect is being compensated for; the other quantities

(e.g. current), varying asymmetrically across the bunch, may
result in less or more gain at other frequencies when all

effects are accounted for.

Consequently, there is a large range of tapers which can

be considered ‘optimum’. But the detuning effect can only

be completely removed across the whole bunch when the

beam has a linear chirp in p2, and using the taper described
in Eq. (11). In that case, the effect on the gain length can be

easily predicted.

Note that, in the above, only 1D effects have been taken

into account. There is no examination of the change

in diffraction parameter, beam divergence parameter etc.
(from [17]) occuring as a result of the dispersion. Prelimi-

nary work suggests that when these effects are included the

impact on the gain can be more severe.

CONCLUSION
We have shown that the beam dispersion in the undulator

is an important effect, and the constraint on when it appears

is actually an order of magintude tighter than the condition

of a ‘small’ chirp. A simple model was presented to take into

account the dispersion, which allows an analytic solution for

a matched taper to eliminate the detuning effect, and allows

one to isolate the effects of the dispersion and measure them.

It is shown that the unaveraged code Puffin agrees with this

result.
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