Keyword: cryomodule
Paper Title Other Keywords Page
SUPB004 Linac Optics Design for Multi-turn ERL Light Source linac, cavity, optics, acceleration 7
 
  • Y. Petenev, T. Atkinson, A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  The optics simulation group at HZB is designing a multi-turn energy recovery linac-based light source. Using the superconducting Linac technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photon beams of angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a variety of operation modes. In this paper a design of transverse optic of the beam motion in the Linacs is presented. An important point in the optics design was minimization of the beta-functions in the linac at all beam passes to suppress beam break-up (BBU) instability.  
 
SUPB025 Development of Superconducting Radio-Frequency (SRF) Deflecting Mode Cavities and Associated Waveguide Dampers for the APS Upgrade Short Pulse X-Ray Project cavity, HOM, photon, damping 65
 
  • J.P. Holzbauer, A. Nassiri, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357.
The Advanced Photon Source Upgrade (APS-U) is a Department of Energy (DoE) funded project to increase the available x-ray beam brightness and add capability to enhance time-resolved experiments on few-ps-scale at APS. A centerpiece of the upgrade is the generation of short pulse x-rays (SPXs) for pump-probe time-resolved capability using SRF deflecting cavities[1]. The SPX project is designed to produce 1-2 ps x-ray pulses for some users compared to the standard 100 ps pulses currently produced. SPX calls for using superconducting rf (SRF) deflecting cavities to give the electrons a correlation between longitudinal position in the bunch and vertical momentum [2]. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter than the bunch length at reduced flux. The ongoing work of designing these cavities and associated technologies will be presented. This includes the design and prototyping of higher-order (HOM) and lower-order mode (LOM) couplers and dampers as well as the fundamental power coupler (FPC). This work will be given in the context of SPX0, a demonstration cryomodule with two deflecting cavities to be installed in APS in early 2014.
[1] A. Zholents, et al., NIM A 425, 385 (1999)
[2] A. Nassiri, et al., “ Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012.
 
 
SUPB027 Mechanical Study of the First Superconducting Half-wave Resonator for Injector II of CADS Project cavity, simulation, HOM, controls 71
 
  • S. He, Y. He, S.C. Huang, F.F. Wang, R.X. Wang, M.X. Xu, Y.Z. Yang, W.M. Yue, C. Zhang, S.H. Zhang, S.X. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  Funding: This work is Supported by the National Natural Science Foundation of China (Grant Agreement 91026001)
Within the framework of the China Accelerator-Driven Sub-critical Systems (CADS) project, Institute of Modern Physics (IMP) Chinese Academic of Sciences has proposed a 162.5 MHz Half-Wave Resonator (HWR) Superconducting cavity for low energy section (β=0.09) of high power proton linear accelerators as a new injector II for CIADS. For the geometrical design of superconducting cavities structure mechanical simulations are essential to predict mechanical eigenmodes and the deformation of the cavity walls due to bath pressure effects and the cavity cool-down. Additionally, the tuning analysis has been investigated to control the frequency against microphonics and Lorentz force detuning. Therefore, several RF, static structure, thermal and modal analysis with a three-dimensional Finite-Element Method (FEM) code Traditional ANSYS have been performed.
 
 
MOPLB06 Fermilab 1.3 GHz Superconducting RF Cavity and Cryomodule Program for Future Linacs cavity, status, linear-collider, linac 153
 
  • C.M. Ginsburg
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The proposed Project X accelerator and the International Linear Collider are based on superconducting RF technology. As a critical part of this effort, Fermilab has developed an extensive program in 1.3 GHz SRF cavity and cryomodule development. This program includes cavity inspection, surface processing, clean assembly, low-power bare cavity tests and pulsed high-power dressed cavity tests. Well performing cavities have been assembled into cryomodules for pulsed high-power tests and will be tested with beam. In addition, peripheral hardware such as tuners and couplers are under development. The current status and accomplishments of the Fermilab 1.3 GHz activity will be described, as well as the R&D program to extend the existing SRF pulsed operational experience into the CW regime.
 
slides icon Slides MOPLB06 [1.508 MB]  
 
MOPLB10 FRIB Technology Demonstration Cryomodule Test cavity, SRF, resonance, solenoid 165
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
slides icon Slides MOPLB10 [2.530 MB]  
 
MOPB026 TRIUMF/VECC e-Linac Injector Beam Test diagnostics, linac, gun, cavity 231
 
  • R.E. Laxdal, F. Ames, Y.-C. Chao, K. Fong, C. Gong, A. Laxdal, M. Marchetto, W.R. Rawnsley, S. Saminathan, V.A. Verzilov, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • J.M. Abernathy, D. Karlen, D.W. Storey
    Victoria University, Victoria, B.C., Canada
  • A. Chakrabarti, V. Naik
    VECC, Kolkata, India
 
  TRIUMF is collaborating with VECC on the design of a 10 MeV injector cryomodule to be used as a front end for a high intensity electron linac. A electron gun and low energy beam transport (LEBT) have been installed in a test area to act as the injector for the cryomodule test. The LEBT includes a wide variety of diagnostics to fully characterize the beam from the gun. A series of beam tests are being conducted during the stage installation. The test configuration details and results of beam tests will be presented.  
 
MOPB030 Performance of First C100 Cryomodules for the CEBAF 12 GeV Upgrade Project cavity, linac, vacuum, instrumentation 237
 
  • M.A. Drury, A. Burrill, G.K. Davis, J. Hogan, L.K. King, F. Marhauser, H. Park, J.P. Preble, C.E. Reece, A.V. Reilly, R.A. Rimmer, H. Wang, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the project is a doubling of the available beam energy of CEBAF from 6 GeV to 12 GeV. This increase in beam energy will be due primarily to the construction and installation of ten “C100” cryomodules in the CEBAF linacs. The C100 cryomodules are designed to deliver an average 108 MV each from a string of eight seven-cell, electropolished superconducting RF cavities operating at an average accelerating gradient of 19.2 MV/m. The new cryomodules fit in the same available linac space as the original CEBAF 20 MV cryomodules. Cryomodule production started in September 2010. Initial acceptance testing started in June 2011. The first two C100 cryomodules were installed and tested from August 2011 through October 2011, and successfully operated during the last period of the CEBAF 6 GeV era, which ended in May 2012. This paper will present the results of acceptance testing and commissioning of the C100 style cryomodules to date.
 
 
MOPB031 Vibration Response Testing of the CEBAF 12 GeV Upgrade Cryomodules cavity, damping, controls, beam-loading 240
 
  • G.K. Davis, J. Matalevich, T. Powers, M. Wiseman
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The CEBAF 12 GeV upgrade project includes 80 new 7-cell cavities assembled into 10 cryomodules. These cryomodules were tested during production to characterize their microphonic response in situ. For several early cryomodules, detailed (vibration) modal studies of the cryomodule string were performed during the assembly process to identify the structural contributors to the measured cryomodule microphonic response. Structural modifications were then modeled, implemented, and verified by subsequent modal testing and in-situ microphonic response testing. Interim and final results from this multi-stage process will be reviewed.
 
 
MOPB037 Linac Optics Design for Multi-turn ERL Light Source linac, cavity, optics, acceleration 258
 
  • Y. Petenev, T. Atkinson, A.V. Bondarenko, A.N. Matveenko
    HZB, Berlin, Germany
 
  The optics simulation group at HZB is designing a multi-turn energy recovery linac-based light source. Using the superconducting Linac technology, the Femto-Science-Factory (FSF) will provide its users with ultra-bright photon beams of angstrom wavelength at 6 GeV. The FSF is intended to be a multi-user facility and offer a variety of operation modes. In this paper a design of transverse optic of the beam motion in the Linacs is presented. An important point in the optics design was minimization of the beta-functions in the linac at all beam passes to suppress beam break-up (BBU) instability.  
 
MOPB052 Fermilab 1.3 GHz Superconducting RF Cavity and Cryomodule Program for Future Linacs cavity, status, linear-collider, linac 291
 
  • C.M. Ginsburg
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The proposed Project X accelerator and the International Linear Collider are based on superconducting RF technology. As a critical part of this effort, Fermilab has developed an extensive program in 1.3 GHz SRF cavity and cryomodule development. This program includes cavity inspection, surface processing, clean assembly, low-power bare cavity tests and pulsed high-power dressed cavity tests. Well performing cavities have been assembled into cryomodules for pulsed high-power tests and will be tested with beam. In addition, peripheral hardware such as tuners and couplers are under development. The current status and accomplishments of the Fermilab 1.3 GHz activity will be described, as well as the R&D program to extend the existing SRF pulsed operational experience into the CW regime.
 
 
MOPB054 Test Results of Tesla-style Cryomodules at Fermilab cavity, SRF, controls, LLRF 297
 
  • E.R. Harms, K. Carlson, B. Chase, D.J. Crawford, E. Cullerton, D.R. Edstrom, Jr, A. Hocker, M.J. Kucera, J.R. Leibfritz, O.A. Nezhevenko, D.J. Nicklaus, Y.M. Pischalnikov, P.S. Prieto, J. Reid, W. Schappert, P. Varghese
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Commissioning and operation of the first Tesla-style Cryomodule (CM-1) at Fermilab was concluded in recent months. It has now been replaced by a second Tesla Type III+ module, RFCA002. It is the first 8-cavity ILC style cryomodule to be built at Fermilab and also the first accelerating cryomodule of the Advanced Superconducting Test Accelerator (ASTA). We report on the operating results of both of these cryomodules.
 
 
MOPB055 Development of Superconducting Radio-Frequency (SRF) Deflecting Mode Cavities and Associated Waveguide Dampers for the APS Upgrade Short Pulse X-Ray Project cavity, HOM, photon, damping 300
 
  • J.P. Holzbauer, A. Nassiri, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357.
The Advanced Photon Source Upgrade (APS-U) is a Department of Energy (DoE) funded project to increase the available x-ray beam brightness and add capability to enhance time-resolved experiments on few-ps-scale at APS. A centerpiece of the upgrade is the generation of short pulse x-rays (SPXs) for pump-probe time-resolved capability using SRF deflecting cavities[1]. The SPX project is designed to produce 1-2 ps x-ray pulses for some users compared to the standard 100 ps pulses currently produced. SPX calls for using superconducting rf (SRF) deflecting cavities to give the electrons a correlation between longitudinal position in the bunch and vertical momentum [2]. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter than the bunch length at reduced flux. The ongoing work of designing these cavities and associated technologies will be presented. This includes the design and prototyping of higher-order (HOM) and lower-order mode (LOM) couplers and dampers as well as the fundamental power coupler (FPC). This work will be given in the context of SPX0, a demonstration cryomodule with two deflecting cavities to be installed in APS in early 2014.
[1] A. Zholents, et al., NIM A 425, 385 (1999)
[2] A. Nassiri, et al., “ Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012.
 
 
MOPB057 Mechanical Study of the First Superconducting Half-wave Resonator for Injector II of CADS Project cavity, simulation, HOM, controls 306
 
  • S. He, Y. He, S.C. Huang, F.F. Wang, R.X. Wang, M.X. Xu, Y.Z. Yang, W.M. Yue, C. Zhang, S.H. Zhang, S.X. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  Funding: This work is Supported by the National Natural Science Foundation of China (Grant Agreement 91026001)
Within the framework of the China Accelerator-Driven Sub-critical Systems (CADS) project, Institute of Modern Physics (IMP) Chinese Academic of Sciences has proposed a 162.5 MHz Half-Wave Resonator (HWR) Superconducting cavity for low energy section (β=0.09) of high power proton linear accelerators as a new injector II for CIADS. For the geometrical design of superconducting cavities structure mechanical simulations are essential to predict mechanical eigenmodes and the deformation of the cavity walls due to bath pressure effects and the cavity cool-down. Additionally, the tuning analysis has been investigated to control the frequency against microphonics and Lorentz force detuning. Therefore, several RF, static structure, thermal and modal analysis with a three-dimensional Finite-Element Method (FEM) code Traditional ANSYS have been performed.
 
 
MOPB061 The New 2nd Generation SRF R&D Facility at Jefferson Lab: TEDF SRF, cavity, cryogenics, electron 315
 
  • C.E. Reece, A.V. Reilly
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,300 m2 purpose-built SRF technical work facility has been constructed and is being occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing has been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 750 m2 cleanroom/chemrooms suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The detailed characteristics of this perhaps first 2nd-generation SRF facility will be described.
 
 
MOPB073 Cold Testing of Superconducting 72 MHz Quarter-wave Cavities for ATLAS cavity, niobium, linac, accelerating-gradient 348
 
  • M.P. Kelly, Z.A. Conway, S.M. Gerbick, M. Kedzie, R.C. Murphy, P.N. Ostroumov, T. Reid
    ANL, Argonne, USA
 
  A set of seven 72 MHz β=0.077 superconducting quarter-wave cavities for a beam intensity upgrade of the ATLAS heavy-ion accelerator has been completed. Cavities have been fabricated using the lessons learned from the worldwide effort to extend the performance of niobium cavities close to the limits of the material. Key developments include the use of electropolishing on the completed cavity and with a temperature control system substantially upgraded from that for elliptical-cell EP systems. Wire EDM, used instead of traditional niobium machining, appears to be effective in eliminating performance limiting defects near the weld seams. Hydrogen degassing at 600C after electropolishing permits practical acceleration at 2 Kelvin with Bpeak>120 mT and cavity voltages>5 MV/cavity.  
 
MOPB074 Thermo-Mechanical Simulations of the Frequency Tuning Plunger for the IFMIF Half-Wave Resonator niobium, cavity, simulation, vacuum 351
 
  • N. Bazin, P. Bosland, S. Chel, G. Devanz, N. Grouas, P. Hardy, J. Migne, F. Orsini, F. Peauger
    CEA/DSM/IRFU, France
 
  In the framework of the International Fusion Materials Irradiation Facility (IFMIF), a superconducting option has been chosen for the 5 MeV RF Linac of the first phase of the project (EVEDA), based on a cryomodule composed of 8 HWRs, 8 RF couplers and 8 Solenoid packages. The frequency tuning system of the IFMIF HWR is an innovated system based on a capacitive plunger installed in the electric field region allowing a large tuning range. Following the cold test results obtained on HWR equipped with the first design of plunger in 2011*, it was decided to develop a new design of a fully-niobium plunger. The paper will present the development of the new plunger concepts and the thermo-mechanical simulations. For the mechanical simulations, the aim is to sufficiently deform the plunger to tune the cavity while staying in the elastic range of the niobium material. For the thermal simulations, all the non-linear properties of the materials and the effects of the RF fields are taken into account: thermal conductivity and surface resistance are depending on the temperature, RF fields computed with dedicated software are leading to thermal dissipations in the materials and the vacuum seal.
* F. Orsini et al., “Vertical tests preliminary results of the IFMIF cavity prototypes and cryomodule development”, SRF 2011, Chigaco, USA
 
 
MOPB077 Lorentz Force Detuning Compensation Studies for Long Pulses in ILC type SRF Cavities cavity, controls, linac, SRF 354
 
  • N. Solyak, G.I. Cancelo, B. Chase, D.J. Crawford, D.R. Edstrom, Jr, E.R. Harms, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, USA
 
  Project-X 3-8 GeV pulsed linac is based on ILC type 1.3 GHz elliptical cavities. The cavity will operate at 25 MV/m accelerating gradient, but in contrast with XFEL and ILC projects the required loaded Q is much higher (Q=107) and RF pulse is much longer (~8ms). For these parameters Lorence force detuning (LFD) and microphonics should be controlled at the level <30 Hz. A new algorithm of LFD compensation, developed at Fermilab for ILC cavities was applied for Lorentz force compensation studies for 8ms pulses. In these studies two cavities inside TESLA-type cryomodule at Fermilab NML facility have been powered by one klystron. Studies done for different cavity gradients and different values of loaded Q demonstrated that required compensation are achievable. Detuning measurements and compensation results are presented.  
 
MOPB090 FRIB Technology Demonstration Cryomodule Test cavity, SRF, resonance, solenoid 386
 
  • J. Popielarski, E.C. Bernard, S. Bricker, S. Chouhan, C. Compton, A. Facco, A. Fila, L.L. Harle, M. Hodek, L. Hodges, S. Jones, M. Leitner, D. R. Miller, S.J. Miller, D. Morris, R. Oweiss, J.P. Ozelis, L. Popielarski, K. Saito, N.R. Usher, J. Weisend, Y. Zhang, S. Zhao, Z. Zheng
    FRIB, East Lansing, USA
  • M. Klaus
    Technische Universität Dresden, Dresden, Germany
 
  A Technology Demonstration Cryomodule (TDCM) has been developed for a systems test of technology being developed for FRIB. The TDCM consists of two half wave resonators (HWRs) which have been designed for an optimum velocity of β=v/c=0.53 and a resonant frequency of 322 MHz. The resonators operate at 2 K. A superconducting 9 T solenoid is placed in close proximity to one of the installed HWRs. The 9 T solenoid operates at 4 K. A complete systems test of the cavities, magnets, and all ancillary components is presented in this paper.
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
 
 
MOPB091 The Injector Cryomodule for the ARIEL e-Linac at TRIUMF cavity, linac, TRIUMF, cryogenics 389
 
  • R.E. Laxdal, A. Koveshnikov, N. Muller, W.R. Rawnsley, G. Stanford, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • M. Ahammed, M. Mondrel
    VECC, Kolkata, India
 
  The ARIEL project at TRIUMF includes a 50 MeV-10 mA electron linear accelerator (e-Linac) using 1.3 GHz superconducting technology. The accelerator is divided into three cryomodules including a single cavity injector cryomodule (ICM) and two accelerating cryomodules with two cavities each. The ICM is being built first. The ICM utilizes a unique top-loading box vacuum vessel. The shape allows the addition of a 4 K/2 K cryogenic unit that accepts near atmospheric LHe and converts to 2 K liquid inside the cryomodule. The cryomodule design is complete and in fabrication. The 4 K/2 K cryogenic unit has been assembled and tested in a test cryostat. The paper will describe the design of the cryomodule and the results of the cryogenic tests.  
 
TU1A04 FRIB Accelerator Status and Challenges linac, ion, cavity, target 417
 
  • J. Wei, E.C. Bernard, N.K. Bultman, F. Casagrande, S. Chouhan, C. Compton, K.D. Davidson, A. Facco, P.E. Gibson, T . Glasmacher, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, R.C. Webber, M. Williams, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  • J.A. Nolen
    ANL, Argonne, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) at MSU includes a driver linac that can accelerate all stable isotopes to energies beyond 200 MeV/u at beam powers up to 400 kW. The linac consists of 330 superconducting quarter- and half-wave resonators operating at 2 K temperature. Physical challenges include acceleration of multiple charge states of beams to meet beam-on-target requirements, efficient production and acceleration of intense heavy-ion beams from low to intermediate energies, accommodation of multiple charge stripping scenarios (liquid lithium, helium gas, and carbon foil) and ion species, designs for both baseline in-flight fragmentation and ISOL upgrade options, and design considerations of machine availability, tunability, reliability, maintainability, and upgradability. We report on the FRIB accelerator design and developments with emphasis on technical challenges and progress.
 
slides icon Slides TU1A04 [4.531 MB]  
 
TUPLB08 R&D Towards CW Ion Linacs at ANL rfq, cavity, ion, acceleration 461
 
  • P.N. Ostroumov, A. Barcikowski, Z.A. Conway, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.V. Kutsaev, J.W. Morgan, R.C. Murphy, B. Mustapha, D.R. Paskvan, T. Reid, D.L. Schrage, S.I. Sharamentov, K.W. Shepard, G.P. Zinkann
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under Contract DE-AC02-76CH03000, DE-AC02-06CH11357 and ANL WFO 85Y47.
The accelerator development group in ANL’s Physics Division has engaged in substantial R&D related to CW proton and ion accelerators. Particularly, a 4 meter long 60.625 MHz CW RFQ has been developed, built and is being commissioned with beam. Development and fabrication of a cryomodule with seven 72.75 MHz quarter-wave cavities is complete and it is being assembled. Off-line testing of several QWRs has demonstrated outstanding performance in terms of both accelerating voltage and surface resistance. Both the RFQ and cryomodule were developed and built to upgrade ATLAS to higher efficiency and beam intensities. Another cryomodule with eight 162.5 MHz SC HWRs and eight SC solenoids is being developed and built for Project X at FNAL. We are also developing both an RFQ and cryomodules (housing 176 MHz HWRs) for proton & deuteron acceleration at SNRC (Soreq, Israel). In this paper we discuss ANL-developed technologies for normal-conducting and SC accelerating structures for medium- and high-power CW accelerators, including the projects mentioned above and other developments for applications such as transmutation of spent reactor fuel.
 
slides icon Slides TUPLB08 [1.414 MB]  
 
TUPB019 Second CW and LP Operation Test of XFEL Prototype Cryomodule feedback, cavity, HOM, LLRF 516
 
  • J.K. Sekutowicz, V. Ayvazyan, J. Branlard, M. Ebert, J. Eschke, A. Gössel, D. Kostin, W. Merz, F. Mittag, R. Onken
    DESY, Hamburg, Germany
  • W. Cichalewski, W. Jałmużna, A. Piotrowski, K.P. Przygoda
    TUL-DMCS, Łódź, Poland
  • K. Czuba, L. Zembala
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • I.M. Kudla, J. Szewiński
    NCBJ, Świerk/Otwock, Poland
 
  In summer 2011, we have performed the first test of continuous wave (cw) and long pulse (lp) operation of the XFEL prototype cryomodule, which originally has been designed for short pulse operation. In April and June 2012, the second test took place, with the next cryomodule prototype. For that test cooling in the cryomodule was improved and new LLRF system has been implemented. In this contribution we discuss results of the second RF test of these new types of operation, which can in the future extend flexibility in the time beam structure of the European XFEL facility  
 
TUPB020 Status of the European XFEL 3.9 GHz system cavity, HOM, status, coupling 519
 
  • E. Vogel
    DESY, Hamburg, Germany
  • A. Bosotti, P. Michelato, L. Monaco, C. Pagani, R. Paparella, P. Pierini, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • E.R. Harms
    Fermilab, Batavia, USA
 
  The third harmonic system at 3.9 GHz of the European XFEL injector section will linearize the bunch RF curvature, induced by first accelerating module, before the first compression stage. This paper presents qualification tests on cavity prototypes and the on-going activities towards the realization of the third harmonic section of the European XFEL in view of its commissioning in 2014.  
 
TUPB030 Overview of the Superconducting Linacs of the Rare Isotope Science Project ion, diagnostics, linac, heavy-ion 540
 
  • D. Jeon, C. Choi, J.D. Joo, H.C. Jung, H.J. Kim, H.J. Kim, S.K. Kim, Y.H. Kim, J.H. Lee, G.-T. Park, J. Song
    IBS, Daejeon, Republic of Korea
  • Y.Y. Lee
    KAERI, Daejon, Republic of Korea
 
  The Rare Isotope Science Project is launched in Korea to build a IF and ISOL facilities. The IF driver superconducting linac is to accelerate ion beams up to 200 MeV/u for U beam and 600 MeV for proton beam. The ISOL post linac is a superconducting linac to accelerate up to 18 MeV/u for U beam. General layout of SC linac is discussed.  
 
TUPB039 Conceptual Design of Superconducting Heavy Ion Linear Injector for HIAF linac, ion, solenoid, cavity 561
 
  • Z.J. Wang, Y. He, H. Jia, C. Li, S.H. Liu, W. Wu, X.B. Xu, B. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  A heavy ion accelerator facility, High Intensity Heavy Ion Accelerator Facility (HIAF), has been promoted by Institute of Modern Physics (IMP)of Chinese Academy of Sciences (CAS). The injector of the accelerator facility is a superconducting linac. It is a high intensity heavy ion linac and works on pulse mode. The final energy is 150 MeV/u. The accelerated species are from P to Uranium. The linac works with both laser and ECR ion source. The designed current is 20 emA. The general concept of HIAF and the preliminary design of linear injector are presented in the paper.  
 
TUPB040 Status of the Linac SRF Acquisition for FRIB linac, cavity, SRF, status 564
 
  • M. Leitner, E.C. Bernard, J. Binkowski, B. Bird, S. Bricker, S. Chouhan, C. Compton, K. Elliott, B. Enkhbat, A.D. Fox, L.L. Harle, M. Hodek, M.J. Johnson, I.M. Malloch, D. R. Miller, S.J. Miller, T. Nellis, D. Norton, R. Oweiss, J.P. Ozelis, J. Popielarski, L. Popielarski, K. Saito, M. Shuptar, G.J. Velianoff, J. Wei, M. Williams, K. Witgen, Y. Xu, Y. Yamazaki, Y. Zhang
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
The Facility for Rare Isotope Beams (FRIB) will utilize a high-intensity, superconducting heavy-ion driver linac to provide stable ion beams from protons to uranium up to energies of >200 MeV/u and at a beam power of up to 400 kW. The ions are accelerated to about 0.5 MeV/u using a room-temperature 80.5 MHz RFQ and injected into a superconducting cw linac consisting of 330 individual low-beta cavities in 49 cryomodules operating at 2 K. This paper discusses the current status of the linac SRF acquisition strategy as the project phases into construction mode.
 
 
TUPB044 Cryogenic System for the ADS Injector II in IMP, CAS cryogenics, solenoid, controls, rfq 576
 
  • X.H. Guo, Y.N. Han, T. Jin, X.F. Niu, H.L. Su, J.H. Zhang
    IMP, Lanzhou, People's Republic of China
  • L.Q. Liu, N. Peng, L.-Y. Xiong
    TIPC, BeiJing, People's Republic of China
 
  Funding: Work supported by Accelerator Driven Sub-critical (ADS) program of CAS, China
In order to meet the requirements of ADS Injector II project which is now being designed and built in IMP, CAS, a liquid helium cryogenic system with 4.5K & 850W cooling power is being built. This paper presents the primary design and the status of this cryogenic system with different operation models according to the need of superconducting tests.
guoxh@impcas.ac.cn
 
 
TUPB046 R&D Towards CW Ion Linacs at ANL rfq, cavity, ion, acceleration 579
 
  • P.N. Ostroumov, A. Barcikowski, Z.A. Conway, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.V. Kutsaev, J.W. Morgan, R.C. Murphy, B. Mustapha, D.R. Paskvan, T. Reid, D.L. Schrage, S.I. Sharamentov, K.W. Shepard, G.P. Zinkann
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under Contract DE-AC02-76CH03000, DE-AC02-06CH11357 and ANL WFO 85Y47.
The accelerator development group in ANL’s Physics Division has engaged in substantial R&D related to CW proton and ion accelerators. Particularly, a 4 meter long 60.625 MHz CW RFQ has been developed, built and is being commissioned with beam. Development and fabrication of a cryomodule with seven 72.75 MHz quarter-wave cavities is complete and it is being assembled. Off-line testing of several QWRs has demonstrated outstanding performance in terms of both accelerating voltage and surface resistance. Both the RFQ and cryomodule were developed and built to upgrade ATLAS to higher efficiency and beam intensities. Another cryomodule with eight 162.5 MHz SC HWRs and eight SC solenoids is being developed and built for Project X at FNAL. We are also developing both an RFQ and cryomodules (housing 176 MHz HWRs) for proton & deuteron acceleration at SNRC (Soreq, Israel). In this paper we discuss ANL-developed technologies for normal-conducting and SC accelerating structures for medium- and high-power CW accelerators, including the projects mentioned above and other developments for applications such as transmutation of spent reactor fuel.
 
 
TUPB053 Main Coupler Design for Project X vacuum, cavity, radiation, linac 594
 
  • S. Kazakov, S. Cheban, T.N. Khabiboulline, M. Kramp, Y. Orlov, V. Poloubotko, O. Pronitchev, V.P. Yakovlev
    Fermilab, Batavia, USA
  • M.S. Champion
    ORNL, Oak Ridge, Tennessee, USA
 
  A multi-megawatt proton/H source, Project X, is under development at Fermi National Accelerator Laboratory. Main element of it is a 3 GeV superconducting proton linac which includes 5 families of superconducting cavities of three frequencies: 162.5, 325 and 650 MHz. Scope of this paper is the development of power couplers for 325 and 650 MHz at FNAL. Upgraded version of the accelerator will require two types of couplers, which reliably can operate at CW power level ~25 kW at 325 MHz and ~100 kW at 650 MHz respectively. In this paper we are describing the current design of these devices.  
 
TUPB060 Multipacting Suppression Modeling for Half Wave Resonator and RF Coupler* simulation, cavity, electron, impedance 612
 
  • Z. Zheng, A. Facco, Z. Liu, J. Popielarski, K. Saito, J. Wei, Y. Xu, Y. Zhang
    FRIB, East Lansing, Michigan, USA
  • Z. Zheng
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
In prototype cryomodule test of Facility of Rare Isotope Beam (FRIB) β=0.53 half-wave-resonators (HWRs) severe multipacting barriers, prevented RF measurement at the full field specified. The multipacting could not be removed by several hours of RF conditioning. To better understand and to eliminate multipacting, physics models and CST simulations have been developed for both cavity and RF coupler. The simulations have good agreement with the multipacting discovered in coupler and cavity testing. Proposed cavity and coupler geometric optimizations are discussed in this paper.
 
 
TUPB062 Longitudinal Dynamic Analysis for the Project X 3-8 GeV Pulsed Linac cavity, controls, linac, injection 618
 
  • G.I. Cancelo, B. Chase, Y.I. Eidelman, S. Nagaitsev, N. Solyak
    Fermilab, Batavia, USA
 
  The Pulsed Linac is a will require over 200 9-cell, 1300 MHz cavities packed in 26 ILC type cryomodules to accelerate 1 mA average beam current from 3GeV to 8 GeV. The architecture of the RF must optimize RF power, beam emittance, and energy gain amid a large number of requirement and constraints. The pulse length is a critical issue. Ideally, a 26 ms pulse would allow direct injection into the Fermilab’s Main Injector, bypassing the need of the Fermilab’s Recicler. High loaded quality factors (QL) are also desirable to minimize RF power. These requirements demand an accurate control of the cavity resonant frequency disturbed by Lorentz Force Detuning and microphonics. Also the LLRF control system must regulate the RF amplitude and phase within tight bounds amid a long list of dynamic disturbances. The present work describes the simulation efforts and measurements at Fermilab facilities.  
 
TUPB067 Development of a Superconducting Half-Wave Resonator for PXIE cavity, simulation, linac, niobium 624
 
  • Z.A. Conway, R.L. Fischer, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.V. Kutsaev, B. Mustapha, P.N. Ostroumov, K.W. Shepard
    ANL, Argonne, USA
  • I.V. Gonin, A. Lunin, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under contract DE-AC02-76CH03000 and DE-AC02-06CH11357
An ambitious upgrade to the FNAL accelerator complex is progressing in the Project-X Injector Experiment (PXIE). The PXIE accelerator requires 8 superconducting half-wave resonators optimized for the acceleration of 1 mA β = 0.11 H ion beams. Here we present the status of the half-wave resonator development, focusing particularly on cavity design, with a brief update on prototype fabrication.
 
 
TUPB068 Cryomodule Designs for Superconducting Half-Wave Resonators vacuum, alignment, cavity, solenoid 627
 
  • Z.A. Conway, G.L. Cherry, R.L. Fischer, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.H. Kim, J.W. Morgan, P.N. Ostroumov, K.W. Shepard
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. DOE, Office of Nuclear Physics, contract number DE-AC02-06CH11357, WFO 85Y47 supported by SNRC, and WFO 82308 supported by Fermi National Accelerator Laboratory.
In this paper we present advanced techniques for the construction of half-wave resonator cryomodules. Recent advances in superconducting low-beta cavity design and processing have yielded dramatically improved cavity performance which reduce accelerator cost and improve operational reliability. This improvement has led to the proposal and construction of half-wave resonators by ANL for the acceleration of 0.1 < \beta < 0.5 ions, e.g., the SARAF Phase-II project at SNRC (SOREQ, Israel) and Project-X at Fermilab. These cryomodules build and improve upon designs and techniques recently implemented in upgrades to ATLAS at ANL. Design issues include the ease of assembly/maintenance, resonator cleanliness, operating at 2 or 4 Kelvin, and ancillary system interfacing.
 
 
TUPB093 Compact 4 kW Variable RF Power Coupler for FRIB Quarter-wave Cavities cavity, vacuum, simulation, linac 678
 
  • M.P. Kelly, Z.A. Conway, M. Kedzie, S.V. Kutsaev
    ANL, Argonne, USA
  • J.L. Crisp, L.L. Harle
    FRIB, East Lansing, Michigan, USA
 
  A new compact 4 kW power coupler has been designed and prototyped at Argonne National Laboratory in collaboration with Michigan State University. The coupler is intended for use on the β=0.085 80.5 MHz superconducting quarter-wave cavities for the FRIB driver linac and also for the planned ReA6 quarter-wave cavity cryomodule. The design has a cold RF window and a 3 cm variable bellows section. The 16 cm overall length of the RF window and bellows facilitates a simple and compact installation onto the cavity inside the clean room. A prototype have been cold tested with high power under realistic conditions at Argonne and results are presented.  
 
TUPB104 Study of the Beam Dynamics in the RISP Driver Linac linac, solenoid, quadrupole, lattice 705
 
  • H.J. Kim, J.G. Hwang, D. Jeon
    IBS, Daejeon, Republic of Korea
 
  Rare Isotope Science Project (RISP) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. The RISP driver linac which is used to accelerate the beam, for an example, Uranium ions from 0.3 MeV/u to 200 MeV/u consists of superconducting RF cavities and warm quadrupole magnets for focusing heavy ion beams. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the requirements of dynamic errors and correction schemes to minimize the beam centroid oscillation and preserve beam losses under control.  
 
TUPB108 Uppsala High Power Test Stand for ESS Spoke Cavities rf-amplifier, linac, power-supply, controls 711
 
  • R.A. Yogi, T.J.C. Ekelöf, V.A. Goryashko, L. Hermansson, M. Noor, R. Santiago Kern, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • D.S. Dancila, A. Rydberg
    Uppsala University, Department of Engineering Sciences, Uppsala, Sweden
  • K.J. Gajewski, T. Lofnes, R. Wedberg
    TSL, Uppsala, Sweden
  • R.J.M.Y. Ruber
    CERN, Geneva, Switzerland
 
  The European Spallation Source (ESS) is one of the world’s most powerful neutron source. The ESS linac will accelerate 50 mA of protons to 2.5 GeV in 2.86 ms long pulses at a repetition rate of 14 Hz. It produces a beam with 5 MW average power and 125 MW peak power. ESS Spoke Linac consists of 28 superconducting spoke cavities, which will be developed by IPN Orsay, France. These Spoke Cavities will be tested at low power at IPN Orsay and high power testing will be performed at a test stand which will be set up at Uppsala University. The test stand consists of tetrode based RF amplifier chain at 352 MHz, 350 kW power and related RF distribution. Outputs of two tetrodes shall be combined with the hybrid coupler to produce 350 kW power. Preamplifier for a tetrode shall be solid state amplifier. As the spoke cavities are superconducting, the test stand also includes horizontal cryostat, Helium liquefier, test bunker etc. The paper describes features of the test stand in details.  
 
WE1A04 The ARIEL Superconducting Electron Linac cavity, gun, TRIUMF, linac 729
 
  • S.R. Koscielniak, F. Ames, R.A. Baartman, I.V. Bylinskii, Y.-C. Chao, D. Dale, R.J. Dawson, E.R. Guetre, N. Khan, A. Koveshnikov, A. Laxdal, R.E. Laxdal, F. Mammarella, M. Marchetto, L. Merminga, A.K. Mitra, T. Planche, Y.-N. Rao, A. Sitnikov, V.A. Verzilov, D. Yosifov, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • D. Karlen, R.R. Langstaff
    Victoria University, Victoria, B.C., Canada
 
  The TRIUMF Advanced Rare Isotope Laboratory (ARIEL) is funded since 2010 June by federal and BC Provincial governments. In collaboration with the University of Victoria, TRIUMF is proceeding with construction of a new target building, connecting tunnel, rehabilitation of an existing vault to contain the electron linear accelerator, and a cryogenic compressor building. TRIUMF starts construction of a 300 keV thermionic gun, and 10 MeV Injector cryomodule (EINJ) in 2012; the designs being complete. The 25 MeV Accelerator Cryomodule (EACA) follows in autumn 2013. TRIUMF is embarking on major equipment purchases and has signed contracts for 4K cryogenic plant and four sub-atmospheric pumps, a 290 kW c.w. klystron and high-voltage power supply, 80 quadrupole magnets, EINJ tank and lid, and four 1.3 GHz niobium 9-cell cavities from a local Canadian supplier. The low energy beam transport and beam diagnotics are being installed at the ISAC-II/VECC test facility. Procurement is anticipated October 2012 for the liquid He distribution system.  
slides icon Slides WE1A04 [4.305 MB]  
 
TH1A01 Results Achieved by the S1-Global Collaboration for ILC cavity, controls, feedback, LLRF 748
 
  • H. Hayano, M. Akemoto, S. Fukuda, K. Hara, N. Higashi, E. Kako, H. Katagiri, Y. Kojima, Y. Kondo, T. Matsumoto, S. Michizono, T. Miura, H. Nakai, H. Nakajima, K. Nakanishi, S. Noguchi, N. Ohuchi, T. Saeki, T. Shidara, T. Shishido, T. Takenaka, A. Terashima, N. Toge, K. Tsuchiya, K. Watanabe, S. Yamaguchi, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki, Japan
  • C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
  • T.T. Arkan, S. Barbanotti, M.A. Battistoni, H. Carter, M.S. Champion, A. Hocker, R.D. Kephart, J.S. Kerby, D.V. Mitchell, T.J. Peterson, Y.M. Pischalnikov, M.C. Ross, W. Schappert, B.E. Smith
    Fermilab, Batavia, USA
  • A. Bosotti, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI), Italy
  • K. Jensch, D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, P. Schilling, M. Schmökel, N.J. Walker, H. Weise
    DESY, Hamburg, Germany
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  The S1-Global collaboration (scope and plans presented at Linac10) ended successfully in 2011. In the S1-Global experiment several variants of ILC components (e.g. cavities, tuners, modules, couplers) proposed by all SCRF collaborators worldwide have been extensively tested and their performances compared, in order to build consensus for the technical choices towards the ILC TDR and to develop further the concept of plug-compatible components for ILC. The experiment has been carried at KEK with contribution of hardware and manpower from all collaborators.  
slides icon Slides TH1A01 [6.656 MB]  
 
TH2A01 The ESS Linac Design linac, klystron, cavity, proton 768
 
  • M. Lindroos, H. Danared, C. Darve, D.P. McGinnis, S. Molloy
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a 5 MW, 2.5 MeV long pulse proton machine. It represents a big jump in power compare to the existing spallation facilities. The design phase is well under way, with the delivery of a Conceptual Design Report expected in 2012, and a Technical Design Report in 2013. Why and how the 5 MW goal influences the parameter choice will be describe.  
slides icon Slides TH2A01 [5.667 MB]  
 
TH2A02 SPIRAL2 Accelerator Construction Progress linac, rfq, ion, ECR 773
 
  • P. Bertrand, R. Ferdinand
    GANIL, Caen, France
 
  The SPIRAL2 superconducting accelerator installation starts in 2012. The major components have been tested in the various partner laboratories, and the building construction is well engaged. The management of the interfaces between process and buildings is a strategic point in an underground project with strong space constraints. This contribution will describe the performances of the various components of the SPIRAL2 accelerator, and the methodology put in place in order to insure the integration of the process inside the buildings.  
slides icon Slides TH2A02 [5.441 MB]  
 
TH3A01 Status of ILC cavity, HLRF, linac, linear-collider 787
 
  • A. Yamamoto
    KEK, Ibaraki, Japan
  • M.C. Ross
    SLAC, Menlo Park, California, USA
  • N.J. Walker
    DESY, Hamburg, Germany
 
  A review of the ILC project with emphasis on the changes in the technical progress report.  
slides icon Slides TH3A01 [5.396 MB]  
 
TH3A02 The 12 GeV Energy Upgrade at Jefferson Laboratory linac, cavity, collider, electron 792
 
  • F.C. Pilat
    JLAB, Newport News, Virginia, USA
 
  Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year.  
slides icon Slides TH3A02 [3.482 MB]  
 
THPLB09 Status of E-XFEL String and Cryomodule Assembly at CEA-Saclay cavity, vacuum, controls, synchrotron 831
 
  • C. Madec
    CEA, Gif-sur-Yvette, France
  • S. Berry, J.-P. Charrier, A. Daël, M. Fontaine, Y. Gasser, O. Napoly, Y. Sauce, C.S. Simon, T.V. Vacher, B. Visentin
    CEA/DSM/IRFU, France
  • A. Brasseur, P. Charon, C. Cloué, S. Langlois, G. Monnereau, J.L. Perrin, D. Roudier, N. Sacépé
    CEA/IRFU, Gif-sur-Yvette, France
 
  As In-Kind contributor to E-XFEL project, CEA is committed to the integration on the Saclay site of the 100 cryomodules of the superconducting linac as well as to the procurement of the magnetic shieldings, superinsulation blankets and 31 cold beam position monitors of the re-entrant type. The assembly infrastructure has been renovated from the previous Saturne Synchrotron Laboratory facility: it includes a 200 m2 clean room complex with 120 m2 under ISO4, 1325 m2 of assembly platforms and 400 m2 of storage area. In parallel, CEA has conducted industrial studies and three cryomodule assembly prototyping both aiming at preparing the industrial file, the quality management system and the commissioning of the assembly plant, tooling and control equipments. In 2012, the contract of the integration will be placed to a subcontractor. The paper will summarize the outputs of the preparation and prototyping phases and the up-coming industrial phase.  
 
THPB014 Lattice Design and Beam Dynamics Studies for Project X linac, lattice, rfq, emittance 876
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, J.-F. Ostiguy, A. Saini
    Fermilab, Batavia, USA
 
  Fermilab is developing Project-X, a high intensity superconducting H machine for high energy physics experiments. The first stage is 1 mA average, 3 GeV linac operating in CW mode. Its front-end comprises a LEBT section with magnetic focusing and pre-chopping, a 162.5 MHz RFQ and ~10 m long MEBT section which includes a high bandwidth, bunch-by-bunch capable chopper. The latter extracts, out of a nominal 5 mA peak 162.5 MHz train, and arbitrary bunch structure able to meet the requirements of different experiments. Acceleration from 2.1 MeV to 3 GeV is accomplished through five families of SRF cavities operating at three frequencies: Half-wave resonators (162.5 MHz), spoke cavities (two families at 325 MHz) and elliptical cavities (two families at 650 MHz). In this contribution, we present the status of the CW linac lattice design and results from recent beam physics studies.  
 
THPB083 Status of E-XFEL String and Cryomodule Assembly at CEA-Saclay cavity, vacuum, controls, synchrotron 1017
 
  • C. Madec
    CEA, Gif-sur-Yvette, France
  • S. Berry, J.-P. Charrier, A. Daël, M. Fontaine, Y. Gasser, O. Napoly, Y. Sauce, C.S. Simon, T.V. Vacher, B. Visentin
    CEA/DSM/IRFU, France
  • A. Brasseur, P. Charon, C. Cloué, S. Langlois, G. Monnereau, J.L. Perrin, D. Roudier, N. Sacépé
    CEA/IRFU, Gif-sur-Yvette, France
 
  As In-Kind contributor to E-XFEL project, CEA is committed to the integration on the Saclay site of the 100 cryomodules of the superconducting linac as well as to the procurement of the magnetic shieldings, superinsulation blankets and 31 cold beam position monitors of the re-entrant type. The assembly infrastructure has been renovated from the previous Saturne Synchrotron Laboratory facility: it includes a 200 m2 clean room complex with 120 m2 under ISO4, 1325 m2 of assembly platforms and 400 m2 of storage area. In parallel, CEA has conducted industrial studies and three cryomodule assembly prototyping both aiming at preparing the industrial file, the quality management system and the commissioning of the assembly plant, tooling and control equipments. In 2012, the contract of the integration will be placed to a subcontractor. The paper will summarize the outputs of the preparation and prototyping phases and the up-coming industrial phase.  
slides icon Slides THPB083 [1.868 MB]  
 
THPB085 LLRF Automation for the 9mA ILC Tests at FLASH cavity, controls, feedback, beam-loading 1023
 
  • J. Branlard, V. Ayvazyan, O. Hensler, H. Schlarb, Ch. Schmidt, N.J. Walker, M. Walla
    DESY, Hamburg, Germany
  • G.I. Cancelo, B. Chase
    Fermilab, Batavia, USA
  • J. Carwardine
    ANL, Argonne, USA
  • W. Cichalewski, W. Jałmużna
    TUL-DMCS, Łódź, Poland
  • S. Michizono
    KEK, Ibaraki, Japan
 
  Since 2009 and under the scope of the International Linear Collider (ILC) R&D, a series of studies takes place twice a year at the Free electron Laser accelerator in Hamburg, (FLASH) DESY, in order to investigate technical challenges related to the high-gradient, high-beam-current design of the ILC. Such issues as operating cavities near their quench limit with high beam loading or in klystron saturation regime are investigated, always pushing the limits of FLASH nominal operational conditions. To support these studies, a series of automation algorithms have been developed and implemented at DESY. These include automatic detection of cavity quenches, automatic adjustment of the superconducting cavity quality factor, and automatic compensation of detuning due to Lorentz forces. This paper explains the functionality of these automation tools, details about their implementation, and shows the experience acquired during the last 9mA ILC test which took place at DESY in February 2012. The benefit of these algorithms and the R&D results these automation tools have permitted will be clearly explained.  
 
FR1A05 SARAF Phase II P/D 40 MeV Linac Design Studies rfq, linac, proton, emittance 1064
 
  • P.N. Ostroumov, Z.A. Conway, M.P. Kelly, A. Kolomiets, S.V. Kutsaev, B. Mustapha
    ANL, Argonne, USA
  • J. Rodnizki
    Soreq NRC, Yavne, Israel
 
  Funding: This work was supported by the ANL WFO No. 85Y47
The Soreq NRC initiated the establishment of SARAF – Soreq Applied Research Accelerator Facility. SARAF will be a multi-user facility for basic research, e.g., nuclear astrophysics, radioactive beams, medical and biological research; neutron based non-destructive testing (using a thermal neutron camera and a neutron diffractometer) and radio-pharmaceuticals research, development and production. The SARAF continuous wave (CW) accelerator is planned to produce variable energy (5-40 MeV) proton and deuteron beam currents (0.04-5 mA). Phase I of SARAF (ion source, radio-frequency quadrupole (RFQ), and one cryomodule housing 6 half-wave resonators (HWR) was installed and being operated at Soreq NRC delivering CW 1mA 3.5 MeV proton beams and low-duty cycle (0.0001) 0.3 mA 4.7 MeV deuteron beams. SARAF is designed to enable hands-on maintenance, which implies very low beam losses for the entire accelerator. The physics design of two options is explored to subsequently develop a conceptual design for selected option for extending the linac to its planned beam parameters (SARAF Phase-II: 40 MeV, 5 mA protons and deuterons).
 
slides icon Slides FR1A05 [3.459 MB]