Keyword: photon
Paper Title Other Keywords Page
SUPB025 Development of Superconducting Radio-Frequency (SRF) Deflecting Mode Cavities and Associated Waveguide Dampers for the APS Upgrade Short Pulse X-Ray Project cavity, HOM, cryomodule, damping 65
 
  • J.P. Holzbauer, A. Nassiri, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357.
The Advanced Photon Source Upgrade (APS-U) is a Department of Energy (DoE) funded project to increase the available x-ray beam brightness and add capability to enhance time-resolved experiments on few-ps-scale at APS. A centerpiece of the upgrade is the generation of short pulse x-rays (SPXs) for pump-probe time-resolved capability using SRF deflecting cavities[1]. The SPX project is designed to produce 1-2 ps x-ray pulses for some users compared to the standard 100 ps pulses currently produced. SPX calls for using superconducting rf (SRF) deflecting cavities to give the electrons a correlation between longitudinal position in the bunch and vertical momentum [2]. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter than the bunch length at reduced flux. The ongoing work of designing these cavities and associated technologies will be presented. This includes the design and prototyping of higher-order (HOM) and lower-order mode (LOM) couplers and dampers as well as the fundamental power coupler (FPC). This work will be given in the context of SPX0, a demonstration cryomodule with two deflecting cavities to be installed in APS in early 2014.
[1] A. Zholents, et al., NIM A 425, 385 (1999)
[2] A. Nassiri, et al., “ Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012.
 
 
MO1A02 Status of the European XFEL – Constructing the 17.5 GeV Superconducting Linear Accelerator cavity, undulator, electron, klystron 105
 
  • W. Decking
    DESY, Hamburg, Germany
 
  The European XFEL is presently under construction in Hamburg, Germany. It consists of a 1.2 km long superconducting linac serving an about 3 km long electron beam transport system. Three undulator systems of up to 200 m length each produce hard and soft x-rays via the self-amplified spontaneous emission (SASE) process. We will present the status of the civil construction and the accelerator components. The production of the 100 superconducting accelerator modules is distributed between industries and a collaboration of accelerator laboratories. We describe the carefully orchestrated production sequence, quality assurance measures and risk mitigation mechanisms. The last module is scheduled to be installed in the accelerator in spring 2015 and commissioning with beam will start in summer of that year.  
slides icon Slides MO1A02 [8.730 MB]  
 
MOPLB12 X-Ray Local Energy Spectrum Measurement on Tsinghua Thomson Scattering X-Ray Source (TTX) scattering, simulation, electron, laser 171
 
  • Y.-C. Du, J.F. Hua, W.-H. Huang, C.-X. Tang, L.X. Yan, H. Zha, Z. Zhang
    TUB, Beijing, People's Republic of China
 
  Thomson scattering X-ray source, in which the TW laser pulse is scattered by the relativistic electron beam, can provide ultra short, monochromatic, high flux, tunable polarized hard X-ray pulse which is can widely used in physical, chemical and biological process research, ultra-fast phase contrast imaging, and so on. Since the pulse duration of X-ray is as short as picosecond and the flux in one pulse is high, it is difficult to measure the x-ray spectrum. In this paper, we present the X-ray spectrum measurement experiment on Tsinghua Thomson scattering. The preliminary experimental results shows the maximum X-ray energy is about 47 keV, which is agree well with the simulations.  
slides icon Slides MOPLB12 [1.311 MB]  
 
MOPB055 Development of Superconducting Radio-Frequency (SRF) Deflecting Mode Cavities and Associated Waveguide Dampers for the APS Upgrade Short Pulse X-Ray Project cavity, HOM, cryomodule, damping 300
 
  • J.P. Holzbauer, A. Nassiri, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357.
The Advanced Photon Source Upgrade (APS-U) is a Department of Energy (DoE) funded project to increase the available x-ray beam brightness and add capability to enhance time-resolved experiments on few-ps-scale at APS. A centerpiece of the upgrade is the generation of short pulse x-rays (SPXs) for pump-probe time-resolved capability using SRF deflecting cavities[1]. The SPX project is designed to produce 1-2 ps x-ray pulses for some users compared to the standard 100 ps pulses currently produced. SPX calls for using superconducting rf (SRF) deflecting cavities to give the electrons a correlation between longitudinal position in the bunch and vertical momentum [2]. The light produced by this bunch can be passed through a slit to produce a pulse of light much shorter than the bunch length at reduced flux. The ongoing work of designing these cavities and associated technologies will be presented. This includes the design and prototyping of higher-order (HOM) and lower-order mode (LOM) couplers and dampers as well as the fundamental power coupler (FPC). This work will be given in the context of SPX0, a demonstration cryomodule with two deflecting cavities to be installed in APS in early 2014.
[1] A. Zholents, et al., NIM A 425, 385 (1999)
[2] A. Nassiri, et al., “ Status of the Short-Pulse X-Ray Project at the Advanced Photon Source,” IPAC 2012, New Orleans, LA, May 2012.
 
 
MOPB089 X-Ray Local Energy Spectrum Measurement at Tsinghua Thomson Scattering X-Ray Source (TTX) scattering, simulation, electron, laser 383
 
  • Y.-C. Du, J.F. Hua, W.-H. Huang, C.-X. Tang, L.X. Yan, H. Zha, Z. Zhang
    TUB, Beijing, People's Republic of China
 
  Thomson scattering X-ray source, in which the TW laser pulse is scattered by the relativistic electron beam, can provide ultra short, monochromatic, high flux, tunable polarized hard X-ray pulse which is can widely used in physical, chemical and biological process research, ultra-fast phase contrast imaging, and so on. Since the pulse duration of X-ray is as short as picosecond and the flux in one pulse is high, it is difficult to measure the x-ray spectrum. In this paper, we present the X-ray spectrum measurement experiment on Tsinghua Thomson scattering. The preliminary experimental results shows the maximum X-ray energy is about 47 keV, which is agree well with the simulations.  
 
TU2A03 LCLS Operation Experience and LCLS-II Design undulator, electron, linac, FEL 432
 
  • T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  This talk will report the operations experience at LCLS and will describe the LCLS-II, a new X-ray FEL facility that uses the middle 1/3 of the SLAC linac as compared to the LCLS which uses the last 1/3 of the SLAC linac.  
slides icon Slides TU2A03 [4.761 MB]  
 
WE1A05 Linac-Based Laser Compton Scattering X-Ray and Gamma-Ray Sources laser, linac, electron, brightness 734
 
  • R. Hajima
    JAEA, Ibaraki-ken, Japan
 
  Laser Compton scattering (LCS) light sources can provide high-energy photons from keV to MeV range. Many research and development projects of linac-based LCS sources are carried on. For the photon energies of tens keV, linac-based LCS sources realize laboratory-size X-ray sources, of which performance can be comparable to synchrotron light sources. Linac-based LCS also realizes unprecedented gamma-ray sources with better monochromaticity than ring-based LCS sources. This talk will review linac-based LCS source in the world.  
slides icon Slides WE1A05 [2.881 MB]