Keyword: ECR
Paper Title Other Keywords Page
TH1A04 Superconducting Linac and Associated Developments at IUAC Delhi linac, ion, rfq, cavity 763
 
  • A. Roy
    IUAC, New Delhi, India
 
  A superconducting linear accelerator system consisting of a series of independently phase locked niobium quarter wave resonators has been developed as a booster of heavy ion beams available from the existing 15UD Pelletron accelerator. Two superconducting linac booster modules having eight niobium quarter wave resonators (QWRs) each have been installed and are fully operational for regular scheduled experiments. The third module is being added to the system. A new high current injector has been planned to couple to the superconducting linac. For this a high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) was designed, fabricated and installed successfully. A radio frequency quadrupole (RFQ) accelerator is being developed for accelerating accelerate ions from the ECR (A/Q ~ 6) to an energy to of about 180 keV/A. The beams will then be accelerated further by drift tube linacs (DTL) to the required velocity to inject them to the existing superconducting linac booster. Prototypes of both these have been tested for power and thermal studies. Details of these developments and associated systems will be presented.  
slides icon Slides TH1A04 [7.830 MB]  
 
TH2A02 SPIRAL2 Accelerator Construction Progress linac, rfq, ion, cryomodule 773
 
  • P. Bertrand, R. Ferdinand
    GANIL, Caen, France
 
  The SPIRAL2 superconducting accelerator installation starts in 2012. The major components have been tested in the various partner laboratories, and the building construction is well engaged. The management of the interfaces between process and buildings is a strategic point in an underground project with strong space constraints. This contribution will describe the performances of the various components of the SPIRAL2 accelerator, and the methodology put in place in order to insure the integration of the process inside the buildings.  
slides icon Slides TH2A02 [5.441 MB]  
 
THPB097 FRIB Front End Design Status rfq, ion, linac, ion-source 1047
 
  • E. Pozdeyev, N.K. Bultman, G. Machicoane, G. Morgan, X. Rao, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • J. Stovall
    CERN, Geneva, Switzerland
  • L.T. Sun
    IMP, Lanzhou, People's Republic of China
  • L.M. Young
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research with rare isotope beams. The FRIB SRF linac will be capable of accelerating medium and heavy ion beams to energies beyond 200 MeV/u with a power of 400 kW on the fragmentation target. This paper presents the status of the FRIB Front End designed to produce uranium and other medium and heavy mass ion beams at world-record intensities. The paper describes the FRIB high performance superconducting ECR ion source, the beam transport designed to transport two-charge state ion beams and prepare them for the injection in to the SRF linac, and the design of a 4-vane 80.5 MHz RFQ. The paper also describes the integration of the front end with other accelerator and experimental systems.