

The ESS Accelerator LINAC 2012 Mats Lindroos Head of ESS **Accelerator Division** and projects

And the second sec

UPPSALA

UNIVERSITET

Roger

Ruber

```
Investment: 1478 M€ / ~10y
Operations: 106 M€ / y
Decomm. : 346 M€
            (Prices per 2008-01-
01)
```

Facility for the search of new states of matter (ie new materials)

Proposals for nEDM, muons, neutrino physics are being studied

5 MW long pulse source: -2.86 ms, 50 mA pulse current, 14 Hz -Protons (H+) -High availability, >95% -First neutrons 2019 with 7 instruments and completion 2025 with 22 instruments at 5 MW operation

...see magnetic atoms

...see inside materials

..see atoms move Courtesy of Ian S. Anderson ...see light atoms

Accelerator milestones

EUROPEAN SPALLATION SOURCE

:	201	5	Τ		20	16				201	7			20	18		2019		2019		2019 2020 2021 202		202		2021		2021		2021		2021		2022			20)23
Q	2	Q3 Q	4 C	1	Q2	Q3	Q4	Q1	0	22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	2 Q3	Q4	Q1	0	22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
				-					-																		1	1-N	łay-	21,	AC	CSY	S.1	.3	Plar	inin.	
		Firs	łΑ	dai	ess	toll	Jba	rad	lė s	sba	ice.	(te	st st	and	(na)																						
							772	u	+ k		Ain	ne f		bet i	yn gy Mar	dea		i das							111												
						9	YYTH	nai.	цĻ	Juli	un r	ys i	or c	25(; 75(;	slali	iu ie	au)	(là)																			
							t t	sea	m	ĻIŞ	cer	nse	ava	ilabi	e (g) : : :																					
												Co	omp	lete	aco	ess	to i	tunr	nel a	and	RF	Ga	llery	rea	dy (g)											
													• Ta	raet	t Bu	ildin	d a	cce:	ss ((a) 🗄						7.1											
															Tar	det	Ĉ'n	obla	ant	dám.	iccir	hhà	à Ì à	α÷÷													
			111					:::						l ľ		go. Ma			an ter.	uotin.	اردر) مالم			14 i i i				L.									
																NO	ппе	a co	nuu	iciin	gipe	an	n co	nnn	ISSIC	וווי	ng	510	ans							11 Ir	
	Ξ.																•	80	Меγ	v pro	otor	ns a	ayall	able				i.									
																		(♦ [Supe	er co	indu	icti	ng l	pear	n bà	ρm	mis	sic	hin	g st	arts						
																		🔶 [v	1éd	ium	Bet	a's	vste	ms:	rea	dyi				T : :							
																		• =	Shal	ka e	Vote	his	rea	dv i													
																			'PY'		ENU	142		97. : 575			احال	j.									
																				/ P	οų i	Me	V PI		15 0	цүд	ular	ле									
																							+	Higi	ιВе	eta	ı sy	ste	ms	rea	dy						
																			/								• F	irst	t Pro	otor	n to T	Farq	et (q) [
																											♦Ē	'nd	of (bòb	stru	ctio	hΔ(50s	<u>i</u> ýs		
																		/																	110		
: :	: :			: :													- /		: : :					: : :											: : :	111	
																	/																				

First Neutrons at ESS!

Accelerator Design Update

years ago)

Mats Lindroos

EUROPEAN

SPALLATION

EUROPEAN

PALLATION

Steve Peggs

Cristina Oyon

Work Package (work areas)

1. Management Coordination – ESS AB (Mats Lindroos) **2**. Accelerator Science – ESS AB (Steve Peggs) (3. Infrastructure Services – now ESS AB!) **4**. SCRF Spoke cavities – IPN, Orsay (Sebastien Bousson) **5**. SCRF Elliptical cavities – CEA, Saclay (Guillaume Devanz) 6. Front End and NC linac – INFN, Catania (Santo Gammino) 7. Beam transport, NC magnets and Power Supplies – Århus University (Søren Pape-Møller) 8. RF Systems – ESS AB (Dave McGinnis)

19. P2B: Test stands – Uppsala University (Roger Ruber)

EUROPEAN

SPALLATION

Guillaume Devanz

Roger Ruber UPPSALA UNIVERSITET

Søren Pape Møller

Santo Gammino

Sebastien Bousson

David McGinnis

LINAClayout

FDSL_2012_05_15

	Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	# of Sections	Temp (K)
LEBT	2.05	75 × 10 ⁻³				≈ 300
RFQ	4.95	75 × 10 ⁻³	352.21		1	≈ 300
MEBT	3.53	3	352.21			≈ 300
DTL	32.58	3	352.21		4	≈ 300
Spoke	58.46	79	352.21	0.50	14 (2C)	≈ 2
Medium Beta	113.84	201	704.42	0.67	15 (4C)	≈ 2
High Beta	227.86	623	704.42	0.92	15 × 2 (4C)	≈ 2
HEBT (Projection)	158.66	2500				

Input to Linac Configuration

Top-level parameters

Particle species	р	
Energy	2.5 GeV	
Current	50 mA	
Average power	5 MW	
Peak power	125 MW	
Pulse length	2.86 ms	
Rep rate	14 Hz	
Max cavity surface	field	40 MV/m
Operating time	5200 h/yea	r
Reliability (all facilit	y)95%	

Mechanical and electromagnetic properties of building blocks

Beam-dynamics laws and rules-of-thumb

Transverse phase advance < 90 deg/cell Longitudinal phase advance below transverse phase advance Smooth change of phase advances per meter Tune depression not too high Watch out for unwanted cavity modes Et cetera

Optimization criteria

Beam quality Short linac (correlates well with many desirable properties) Small number of components (reliability) Upgrade potential Et cetera

Håkan Danared

Línac Optics - Longitudinal

EUROPEAN SPALLATION SOURCE

Phase advance per transverse period, without space charge. Longitudinal < transverse < 90 degrees to avoid emittance transfer between planes.

Phase advance per meter, without space charge. Are made smooth functions of z to avoid emittance and halo increase.

Synchronous phase. Maximum energy gain at zero but margin for $\Delta p/p$ needed.

- 1. RFQ and DTL have strong longitudinal focusing.
- 2. Phase advance decreases with $(\beta\gamma)^{3/2}$.
- 3. Spokes have longer period, so same focusing due to mathced cavity voltages gives more phase advance per period.
- 4. Phase advance decreases with $(\beta\gamma)^{3/2}$, φ_s increases to increase energy gain.
- 5. Decrease ϕ_s to get stronger focusing and more phase advance per meter...
- 6. ...to match the focusing and phase advance of the medium betas after frequency jump and with higher cavity voltages.
- 7. Increasing ϕ_s and decreasing $(\beta\gamma)^{3/2}$ reduces focusing, but voltage increase compensates and keeps phase advance at 90°.
- 8. Again increase focusing, now to match high-beta voltages and to match empty period.
- 9. Increasing cavity voltage increases focusing and phase advance.
- 10.Energy gain limited by cavity voltage.

Håkan Danared

Ion source and NC línac

 Prototype proton ion source operational (and under further development) Catania

EUROPEAN SPALLATION SOURCE

- RFQ tests for ESS conditions at CEA
- RFQ design ready for 5 m IPHI like RFQ
- MEBT design work at ESS Bilbao
- DTL design work at ESS and in Legnaro

1

Medium-Energy Beam Transport

	BPM (position and TOF)		SEM grid
Â	Wire scanner	0	BCT
	BSM	R	Slit
	Collimator		Quad

Schematic design with instrumentation, chopping and collimation.

Mechanical layout and beam-physics design with 10 quadrupoles and 2 buncher cavities.

Spoke resonators/cavities

- Spoke cavity RF design:
 - Double spoke beta 0.5
- Spoke cavity mechanical design
- Power coupler

EUROPEAN SPALLATION SOURCE

- EURISOL type design
- Spoke cold tuning system

Cavity RF parameters									
R/Q	426 Ω								
G	130 Ω								
Q_o at 4K	2.6 10 ⁹								
$\rm Q_o$ at 2K	1.2 10 ¹⁰								
E_{pk} / E_{acc}	4.43								
B_{pk}/E_{acc}	7.08								

3

Spoke Cryomodules

The fully equipped spoke cryomodules provide operating conditions (vacuum, cryogenics) to the spoke resonators.

- > 2 double-spoke resonators per cryomodule
- ➢ 14 cryomodules in total to cover Energy range between 79 MeV to 201 MeV
- Operation at 2 K
- Dimension : 2.9 m long , 1.3 m diameter

Elliptical cavities

Latest key achievements

- Ordered two prototype cavities (Nb, fabrication)
- Clean room tooling design for prototypes 50 % completed
- Medium beta PhD started at Lund-U
- Study of HOM effects on the beam dynamics and RF dissipations completed
- \rightarrow No need of HOM
- Some CM activities:
 - Combined effort of Orsay/Saclay to design and build a 4-elliptical cavity cryomodule on-going
 - Cryoload evaluation

beta	Eacc VT (MV/m)	Eacc Linac (MV/m)z	Qo @ nominal Eacc
0.67	17	15	5e9
0.92	20	18	6e9

Ellíptical Cryomodules

	Section	Total number of Modules	Cavity package frequency [MHz]	Cavity count per module	Cavity count per sector	Cryo- module length [m]	Sector length [m]
	Spoke	14	352	2	28	~ 2.9	58.46
	Medium-beta	15	704	4	60	~ 6.7	113.84
	High-beta	30	704	4	120	~ 6.7	227.86
_	Total	59			208		400.16

 Elliptical Cavities Cryomodule Technology Demonstrator results by the end of 2015 → start pre-series

Beam instrumentation

Sector	🔽 BLM 🔽	BCM 🔽	BPM 🔽	Slit 🔽	Grid 🔽	FC 🔽	ws 🔽	NPM 🔽	lmg 🔽	Halo 🔽	BSM 🔽
LEBT	0	2	0	1	2	1	0	0	0	0	0
MEBT	0	2	6	1	1	1	4	0	0	2	1
DTL	3	5	8	0	0	3	3	0	0	0	0
SPK	42	1	28	0	0	2	5	5	0	4	3
MB	48	2	32	0	0	0	4	4	0	4	3
HB	60	1	30	0	0	0	4	4	0	4	3
UHB	22	2	14	0	0	0	4	4	0	2	2
A2T	19	2	15	0	2	0	3	4	2	4	0
DmpL	10	2	8	0	1	0	1	1	1	1	0
TOTAL	204	19	141	2	6	7	28	22	3	21	12

RF systems

Main Challenges

EUROPEAN SPALLATION SOURCE

- Large number or resonators (>200)
- Large beam loading ($Q_L < 7x10^5$)
- Large Lorentz de-tuning (>50 degrees)
- Long Pulse length (3 mS ~3 Lorentz detuning time constants)
- Large dynamic range in power(elliptical cavities range from 50kW – to 900kW)
- Large average power (15 MW of AC power)

- Main Features
 - One RF power source per resonator
 - RF Sources
 - Pulsed cathode klystrons for elliptical, DTL, and RFQ
 - Gridded tube for spokes (IOTs)
 - Two klystrons per modulator for high beta ellipticals and four klystrons per modulator for medium beta ellipticals
 - 30% overhead for RF regulation
 - Adaptive low level feed-forward algorithms and Low gain feedback
 - High bandwidth piezo tuners on superconducting cavities
 - Bundled waveguide stub layout

RF System Procurement Strategy

- Schedule is strongly emphasized
- Procurement Strategy
 - ESS will write functional technical specifications
 - Does *not* impose a topology on the vendors
 - Will have at least 2 vendors produce components (modulators, klystrons, circulators for series production)
 - Call for tender for production of multiple (3) prototypes
 - Possibility for multiple vendors to be successful
 - At least 1 year soak test on prototypes
 - Call for tender for series production based on vendors with successful prototypes

SPALLATION Integrated Control System for ESS

- Decision to have a single integrated control system for ESS
 - EPICS based
 - ITER control box concept
- Achievements:
 - Control Box prototype running at ESS
 - Naming Convention with tools implemented
 - Working Development Environment and prototype ESS CODAC
 - Well defined Safety / Protection system architecture
 - Parameter List tools developed
 - Interfaces with the Instrument Controls defined
 - BLED database for parameters
- Issues:
 - Target Safety System and Infrastructure Controls requirements immature
 - Fast data acquisition for Accelerator AND Instruments?
 - ICS scope not resourced

Reliability, Availability and the ESS

-ESS aim: 95% availability

- higher than any existing facility
- User Centric Availability Definition

Based on discussions with users: Using weighted % of scheduled beam power >70% averaged over 1 second.

For example :

EUROPEAN SPALLATION SOURCE

Consider a day: one hour of 70% power, 4 Hrs with 90%, 18.9 Hrs with 100% power and 6 min accelerator trip gives an availability of: 96.66%

Uppsala Test Stand

EUROPEAN SPALLATION SOURCE

- FREIA hall
 - ground breaking 14 May 2012
 - hall ready by 1 July 2013
- 352 MHz source choice
 - report delivered 16 May 2012 (awaiting approval ESS)
 - preparing detailed specs for tendering
- cryogenics
 - liquefier deadline 20 June 2012
 - starting test cryostat design
- installation and commissioning
 - preparing detailed planning

<image>

Test Stand in Lund

Scope:

- 1. soak tests (1 y) of 3 different prototypes of the 704 MHz **modulator**;
- long term (appx 9 m) test of three identical prototypes of the 704 MHz klystron;
- 3. testing of 704 MHz RF components (circulators, dummy loads);
- 1. series testing in situ of all 704 MHz modulators
- 2. series testing in situ of all 704 MHz klystrons
- 3. series testing of all elliptical cavities **cryomodules** at full RF load and at final operating temperature
- 4. vertical test stand for future testing of cavities
- Decision to go ahead with detailed plans for the testing facilities in Lund in summer 2012 to stay on schedule
 - Uppsala crucial for 352 MHz development and spokes

LINAC and klystron buildings, principal structure

European Spallation Source

- Flat power profile ("Galambos margin")
 - Could reduce linac length by 400 MeV (6 cryomodules)
 - Saves money in RF Stations and in cryomodules
- IOT's
 - Replace klystrons with IOT's
 - Modulators become much simpler with lower voltage and no switching
 - Higher efficiency requires fewer modulators
 - Saves:
 - Saves money as modulator are 30% cheaper
 - 3-4 MW in RF power (~2-3 Meuro/year)

What if ESS did have constant phase?? Get an extra 250 MeV

- Extra energy gain is ~ 10% energy margin, or gradient margin
 - Or save cryomodules

J. Galambos, 2012

EUROPEAN SPALLATION SOURCE

> Discontinuity => need for phase/amplitude ramp Seems odd way to design a machine

Responsible

Carbondioxide: - 30,000 ton/year

Renewable

Carbondioxide:

EUROPEAN SPALLATION SOURCE

- 120 000 ton/year

Recyclable Carbondioxide:

- 15 000 ton/year

- Energy efficiency and recovery is a design goal for a multi MW facility
 - Heat recovery is good but even better are: efficient RF sources, high Q₀ cavities, ...
- SNS experience indicates that multi MW SC linacs are very flexible and "permitting"
 - Can we do joint work on understanding this so that we can do better design work?
- Critical path is RF systems followed by CMs
 - Staged installation of ESS with 1.5 MW capability in 2019 and 5 MW capability in 2025

29

Contributors

- Many, many, many thanks to the ESS Accelerator Division, the ADU collaboration and ESS AB
- Slides contributed by:
 - Håkan Danared, John Galambos, Christine Darve, David
 McGinnis, Suzanne Gysin, Juliette Plouin, Guillaume Devanz,
 Sebastien Bousson, Santo Gammino, Roger Ruber, Søren Pappe Møller, Andreas Jansson, Mohammad Eshraqi

Frozen accelerator design in Falsterbo 2011

EUROPEAN SPALLATION SOURCE

ESS, A wonderfull challenge!

