

Status of ILC

<u>A. Yamamoto</u>, M. Ross, and N. Walker *ILC-GDE Project Managers*

An invited talk at LINAC12, Tel-Aviv, 2012-09-13

A. Yamamoto, LINAC12, 120913-b

Status of ILC

1

Acknowledgements

• We would thank

İİL

- World-wide collaborators for their cooperation to proceed global design and R&D efforts, and to realize the ILC.
- Further presentations at LINAC12, related to "Status of ILC"
 - V. Yakovlev (MO1A03): SRF Linac Technology Development"
 - C. Adolphsen (MOPB044) : "ILC RF Development Summary"
 - C. Ginsburg (MOPB052): "Fermilab 1.3GHz SCRF cavity and ... "
 - Y. Iwashita (MOPB053): "Non-distructive Inspection ..."
 - E. Harms (MOPB054): Test Results of Tesla-style Cryomodule ..."
 - A. Grassellino (MOPB078): "High Q Studies for Nb Cavities ..."
 - Y. Fuwa (TUPB090): "Development of Permanent Magnet Focusing"
 - M. Kemp (WE2A02): Solid State Marx Modulators for ..."
 - H. Hayano (TH1A01): Results achieved by the S1-Global Collab. ..."

Outline

• Introduction:

İİL

- ILC GDE: What we planned, and where we are ?
- Design updates: Baseline for Technical Design 2012
- Progress in Technical Design Phase
 - Cavity Gradient R&D: DESY, JLab, Fermilab, Cornell, KEK
 - System Test: FLASH, STF/S1-Global/QB, NML/ASTA
 - An additional progress in <u>conduction-cooling Q magnet</u>
 - Preparation for industrialization
 - Technical Design Report (TDR)
- Summary
- Scope beyond TDR (in case of questions)
 - Technical effort beyond TDR (2012)

A. Yamamoto, LINAC12, 120913b

4

Configuration: RDR to TDR

RDR-2007 →

TDR-2012

Status of ILC

A. Yamamoto, LINAC12, 120913b Cost containment Motivation:

- Single accelerator tunnel
- Smaller damping ring
- e+ target at high-energy end,
- Cavity G. 31.5 MV/m +/- 20 %,
- HLRF and tunnel layout:
 - Klystron-Cluster on surface (KCS), or
 - Distributed Klystron in tupped (DKS)

Flat-land or Mountainous Tunnel Design

HLRF Power Distribution Design

IIb Klystron Cluster Scheme (KCS)

- Marx Modulators
- Clusters of klystrons
 - (2 × ~ 30 10-MW MBK) on surface
- RF power distribution via major waveguide (300 MW)

Distributed Klystron Scheme (DKS)

- Marx modulator
- 10-MW MBK per 39 cavities
- Everything in tunnel

C. Adolphsen (MOPB044): *ILC RF development* M. Kemp (WE2A02): *Solid State Marx Modulators*

IC Technical Goals for TD Phase

SCRF Technology

- Cavity: High Gradient R&D to:
 - 35 MV/m with 50% yield by 2010, and 90% by 2012 (TDR)
 - Manufacturing with cost effective design
- Cryomodule performance including HLRF, and LLRF

System Test with ILC-like Beam

- ILC-like beam acceleration
 - 9 mA: FLASH
 - 1 ms: STF2 Quantum Beam
 - Ultra-low beam emittance: Cesr-TA, ATF
 - Ultra-small beam size at Final Focusing: ATF2

Global Plan for SCRF R&D

Year	07	200	8	200	9	201	0	2011	2012	
Phase		Т	DP-	1			TDP-2			
Cavity Gradient in v.		$\rightarrow \text{Yield 50\%} \qquad \rightarrow \text{Yield 90}$						90%		
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Glob asse (DESY,	al ef mbly FNAL	fort for y and ., INFN,	or st test ĸeĸ)	ring		We a	e here	
System Test with beam acceleration			FL/	ASH (I QB, S	DES STF2	Y),№ 2 (KE	NML EK)	/ASTA (F	NAL)	
Preparation for Industrialization				I	Prod	lucti	on ⁻	Fechnolo	gy R&D	
Communication with industry:	1 st Visit V 2 nd visit a 3 rd comm	endors (and comr nunicatior	2009), munica n and s	Organiz ation, Org study cor	ze Wor ganize ntracte	rkshop 2 nd wo d with s	(2010 orksho select)) p (2011) ed vendors (2	011-2012)	

H. Padamsee, ILC-08 (Chicago)

Global Yield of Cavities in 2008 -- where we were ? --

Originallypresented by H. Padamsee, TTC-08 (IUAC)

Definition for production yield, not established yet

Status of ILC

9

Standard Procedure Established

for ILC-SCRF Cavity evaluation, in guidance of TTC

			Standard Fabrication/Process					
		Fabrication	Nb-sheet purchasing					
			Component Fabrication					
			Cavity assembly with EBW					
		Process	EP-1 (~150um)					
			Ultrasonic degreasing with detergent, or ethanol rinse					
all			High-pressure pure-water rinsing					
			Hydrogen degassing at > 600 C					
			Field flatness tuning					
			EP-2 (~20um)					
			Ultrasonic degreasing or ethanol (or EP 5 um with fresh acid)					
			High-pressure pure-water rinsing					
			Antenna Assembly					
	7		Baking at 120 C					
		Cold Test (vertical test)	Performance Test with temperature and mode measurement					

Key Process

Fabrication

- Material
- <u>EBW</u>
- Shape

Process

- Electro-Polishing
- Ethanol Rinsing or
- Ultra sonic. + Detergent Rins.
- High Pr. Pure Water cleaning

iΓ

C. Ginsburg (MOPB052)

ILC 1.3 GHz Cavity Performance Benchmark

ILC-GDE Cavity Data Base Team formed by: C. Ginsburg, R. Geng, Z. Conway/F. Furuta, S. Aderhold, Y. Yamamoto since 2009.
Data updated, every year (6 times) and latest update at April. 2012.

C. Ginsburg

ILC 1.3 GHz Cavity Performance Benchmark

for 2010-2012 alone is (69 +- 13)%

 2^{nd} pass yield for >35 MV/m for integrated sample is $(57 + \frac{1}{2})\%$

Status of ILC

http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=85&sessionId=36&confId=54 Daegu, S. Korea GInsburg et al., KILC12, International cavities from established vendors using established processes C.M. 12

C. Ginsburg ILC 1.3 GHz Cavity Performance Benchmark

Experiences from IL JLab, Fermilab, Cornell Collaboration

- Type-I: quench limit occurs at a gradient > 25 MV/m.
 - Normally <u>no observable</u> feature at the quench site

- Often, <u>a second EP effectively improves</u> the quench limit to > 30 MV/m.
- Type-II: quench limit occurs in a gradient range of 15-25 MV/m.
 - Often correlated with <u>sub-mm sized geometrical defects</u> (mostly pits but bumps are also observable) at or near the equator EB welding.
 - Repeated EP has no or little effect in improving the quench limit, suggesting the permanent nature of these defects.

How we may achieve the 90 % yield?

Overcome: Limit at E< 25 MV/m

IL

- QC at manufacturing process (at vendor)
 - Material quality/uniformity including near surface
 - Need to find novel inspection and acceptance criteria
 - Optical, X-ray, Eddy current: acceptance criteria,
 - Welding quality control
 - Need to find clear inspection and acceptance criteria
 - Optical, X-ray, others,
 - <u>Repair</u>technique
 - Local grinding, melting, ...
- QC at further assembly process (to <u>eliminate contamination</u>)
 Improve Gradient toward E > 35 MV/m
- QC at surface preparation process (at vendor and/or laboratory)
 - Suppress field emission
 - Need much more research effort to understand surface and to establish quality control in chemical process and cleaning

Inspection and Repair Technology may improve the Yield

Technology in progress:

- Localization during test
 + Optical inspection
 - + Local repairing

Cavity	Repaired at (EP/ MT/ LG)	Tested at	Bef.	Aft.	Year
AES-5	Cornell (EP)	JLab	20	31	2010
AES-6	FNAL (Tumbling)	JLab	21	36	2011
ACC-15	FNAL (Tumbling)	J / Fnal	18	35	2011?
LG#1	JLab-KEK (LG)	JLab	31	(42)	2010?
MHI-08	KEK (LG)	KEK	16	27	2009
MHI-14	KEK (LG)	KEK	13	37	2011
MHI-15-1	KEK (LG)	KEK	23	33	2011
MHI-15-2	KEK (LG)	KEK	29	36	2011
MHI-15-3	KEK (LG)	KEK	18	36	2012
MHI-16	KEK (LG)	KEK	21	34	2012
MHI-19	KEK (LG)	KEK	26	37	2012
HIT-2	KEK (LG)	KEK	35	41	2012

Blue: Repaired after the 1st cycle process
Status of ILS

A. Yamamoto, LINAC12, 120913b

Progress in Industrial Participation to ILC Cavity Production

year	# 9-cell cavities qualified	# of Labs reaching 35 MV/m processing	# of Industrial manufacturers reaching 35 MV/m fabrication
2006	10	1 DESY	2 ACCEL, ZANON
2011	41	4 DESY, JLAB, FNAL, KEK	4 RI, ZANON, AES, MHI,
2012	(45)	5 DEY, JLAB, FNAL, KEK, Cornell	5 RI, ZANON, AES, MHI, Hitach

<u>Recent Progress in Industry/Lab</u>

- <u>Niowave-Roark/Fermilab</u> (TB9NR004): reached 30 MV/m (Nov. 2011)
- <u>Hitachi/KEK (HIT02)</u>: reached 41 MV/m with HOM (April, 2012)
- <u>Toshiba/KEK (TOS-02)</u>: reached 35 MV/m w/o HOM (March 2011)
- Accel (RI)/Cornell (A9) : reached 40 MV/m w/ HOM, vertical EP (April, 2012)

17

- DESY (LG-) : reached > 45 MV/m w/ large-grain (2011~12)
- **Progress in EXFEL** (updated by W. Singer : the 2nd EP at DESY, as of Sept. '12)
 - RI: 4 reference cavities with Eacc > 28 MV/m, (~ 39 MV/m max.)
 - Zanon: 4 reference cavities with Eacc > 30 MV/m (~ 36 MV/m max.)
 A. Yamamoto, LINAC12, 120913 Status of ILC

İİL

Global Plan for SCRF R&D

Year	07	200	8	2009	2	010	2011	2012
Phase		Т	DP-	-1 TDP-2				
Cavity Gradient in v. test to reach 35 MV/m		\rightarrow Yield 50% \rightarrow Yield						90%
vity-string to reach 31.5 MV/m, with one- cryomodule		Glob asse (DESY,	Blobal effort for string ssembly and test DESY, FNAL, INFN, KEK)					e here
System Test with beam acceleration			FL/	ASH (DE QB, ST	SY) F2 (F	, NML (EK)	/ASTA (F	NAL)
Preparation for Industrialization				Pr	oduc	tion	Technolo	gy R&D
Communication with industry:	1 st Visit V 2 nd visit a 3 rd comm	endors (and comr unicatior	2009), munica n and s	Organize V ation, Organ study contra	Vorksho ize 2 nd cted wit	op (2010 worksho th select)) pp (2011) ed vendors (2	011-2012)

SCRF Technology Required

Parameters	Value
C.M. Energy	500 GeV
Peak luminosity	1.5 x10 ³⁴ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse duration	0.73 ms
Average current	5.8 mA (in pulse)
Av. field gradient	31.5 MV/m +/-20%
# 9-cell cavity	16024 (x 1.1)
# cryomodule	1,855
# Klystron	~400

 Cavity Performance requirement:
 G = 35 MV/m +/- 20 %
 Q0 = 0.8 E10

Progress in SCRF System Tests

• DESY: FLASH

- SRF-CM string + Beam,
 - ACC7/PXFEL1 < 32 MV/m >
- 9 mA beam, 2009
- 800µs, 4.5mA beam, 2012

• KEK: STF

- S1-Global: complete, 2010
 - Cavity string : < 26 MV/m>
- Quantum Beam : 1 ms
- CM1 + Beam, in 2014

FNAL: NML/ASTA

- CM1 test complete
- CM2 operation, in 2012
- CM2 + Beam, beyond 2013

A. Yamamoto, LINAC12, 120913b

FLASH 9mA Expt achievements: 2009-mid 2012

High beam power and long bunch-trains (Sept 2009)

Metric	ILC Goal	Achieved
Macro-pulse current	9mA	9mA
Bunches per pulse	2400 x 3nC (3MHz)	1800 x 3nC 2400 x 2nC
Cavities operating at high gradients, close to quench	31.5MV/m +/-20%	4 cavities > 30MV/m

Gradient operating margins (Feb 2012)

Metric	ILC Goal	Achieved
Cavity gradient flatness (all cavities in vector sum)	2% ∆V/V (<mark>800µs, 5.8mA</mark>) (800µs, 9mA)	<0.3% ∆V/V (800µs, 4.5mA) First tests of automation for Pk/QI control
Gradient operating margin	All cavities operating within 3% of quench limits	Some cavities within ~5% of quench (800us, 4.5mA) First tests of operations strategies for gradients close to quench
Energy Stability	0.1% rms at 250GeV	<0.15% p-p (0.4ms) <0.02% rms (5Hz)
A. Yamamoto, LINAC12, 120913-	Status of ILC	21

b

FLASH 9mA Studies: beam operation close to cavity gradient limits (4.5mA/800us bunch trains)

Tailored cavity Loaded-Qs to cancel beam-loading induced gradient tilts

Operation at 380MeV on ACC67 (13 cavities) 40.0 Red: auench limit 38.0 cavity Blue: operating gradient 36.0 34.0 Gradient (MV/m) 32.0 30.0 28.0 26.0 24.0 22.0 20.0 The limiting cavity is within 5% of guench

- Flattened individual gradients to <<1% p-p
- Several cavities within 10% of quench
- 'Crash test': very rapid recovery of 800us / 4.5mA after beam trip
- Ramped up current from ~zero to 4.5mA with ACC67 gradients approaching quench
- 'Cavity gradient limiter' to dynamically prevent quenching without turning off the rf

A. Yamamoto, LINAC12, 120913b

9mA Studies: evaluating rf power overhead requirements (4.5mA/800us bunch trains)

- Klystron high voltage was reduced from 108KV to 86.5KV so that the rf output just saturated during the fill
- The required beam-on power ended up being ~7% below saturation

A. Yamamoto, LINAC12, 120913-b

RF Power (dBm)

H. Hayano (TH1A01): S1-Global Assembly/Test with Global Effort

DESY, FNAL, Jan., 2010

DESY, Sept. 2010

DESY, May, 2010

A. Yamamoto, LINAC12, 120913-b

March, 2010

Status of ILC

June, 2010 ~

ic 7-cavity operation by digital LLRF

LLRF stability study with 7 cavities operation at <u>25MV/m</u>

- Vector-sum stability: 24.995MV/m ~ 24.988MV/m (~0.03%)
- Amplitude stability in pulse flat-top: < 60ppm=0.006%rms
- Phase stability in pulse flat-top: < 0.0017 degree.rms

STF Quantum-Beam experiment

Quantum-Beam Accelerator Starting as starting of KEK-STF-2 Beam acceleration (40 MV) and transport for 1 ms, successful ! April, 2012 Capture cry collision point (Laser, electron beam)
 Stop
 H-Line1
 H-Line2
 Camera Select
 Color Map

 286
 377
 ■
 WM-PRM-07
 ●
 Ø ON ○
 OFF
 LC RF unit : 3 cryomodules and the second second second RF oun cavity SMW R 10MW Multi-beam Klystron (#3) power (#2) power (#1) A. Yamamoto, LINAC12, 120913-Status of ILC

E. Harms (MOPB054)

• CM-2 expected to reach the system test, in 2012

- 7 cavities reached > 35 MV/m in VT (Jlab), > 33 MV/m in HT (Fermi),

Expect > 30 MV/m on average in CM test

Progress in Conduction-cooled, Split-able Quadrupole Magnet R&D.

Advantages;

- Q-magnet may be assembled separately,
- Keep "best clean" during cavity string assembly
- No additional cryostat and cryogenics
- Highly accurate alignment without LHe vessel

V. Kashikhin

Collaboration; Fermilab: - magnet KEK: - Cooling

Conduction cooling through Al-strips

Kimura, Kashikhin, Tartaglia

Conduction Cooling Test using Cryo-Cooler held at KEK, Aug-Sept. 2012

Kimura, Kashikhin, Tartaglia

Conduction Cooling Test using Cryo-Cooler İİİ held at KEK, Aug-Sept. 2012

30

if: Global Plan for SCRF R&D

Year	07	200	8	2009	2	010	2011	2012
Phase		Т	DP-	1			TDP-2	2
Cavity Gradient in v. test to reach 35 MV/m		→ Yi	eld	50%			> Yield	90%
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Glob asse (DESY,	bal effort for string sembly and test SY, FNAL, INFN, KEK)					e here
System Test with beam acceleration			FL/	ASH (DI QB, ST	ESY) [F2 (I	, NML KEK)	/ASTA (F	NAL)
Industrialization				Pr	oduc	tion	Technolo	gy R&D
Communication with industry:	1 st Visit V 2 nd visit a 3 rd comm	endors (2 and comr unicatior	2009), munica n and s	Organize ation, Organ study contra	Worksh nize 2 nd acted wi	op (2010 worksho th select)) pp (2011) ed vendors (2	011-2012)

b

32

Plug-compatibly of Cavities Important for Global Cooperation

Plug-compatible interface need to be established

The 3rd Cycle Communication with Companies Further studies with some contracts in 2011-2012

	Year	Company	Place	Technical subject	
1	2011~2012	Hitachi (KEK)	Tokyo (JP)	Cavity/Cryomodule (CM)	
2	2011~2012	Toshiba (KEK)	Yokohama (JP)	Cavity/CM, SC Quadrupole	
3	2011~2012	MHI (KEK)	Kobe (JP)	Cavity / CM	
4	2011~2012	Tokyo Denkai	Tokyo (JP)	SC Material	
5	2011	OTIC	NingXia (CN)	SC Material	
6	2011	Zanon	Schio (IT)	Cavity/CM	
7	2011~2012	RI (DESY)	Koeln (DE)	Cavity, Coupler	
8	2011~2012	AES (Fermilab)	Medford, NY (US)	Cavity	
9	2011	Niowave	Lansing, MI (US)	Cavity/CM	
10	2011	PAVAC	Vancouver (CA)	Cavity	
11	2011	ATI Wah-Chang	Albany, OR (US)	SC Material	
12	2011	Plansee	Ruette (AS)	SC Material	
13	2011	SDMS	Sr. Romans (FR)	Cavity	
14	2011~2012	Heraeus	Hanau (DE)	SC Material	
15	2011~2012	Babcock-Noell (CERN)	Wurzburg (DE)	CM assembly	
16	2011	SST	Maisach (DE)	EBW	
17	2012	Tokyo Electron-Tube	Nasu (JP)	HLRF (Klystron, Coupler)	
18	2012	Thales	Velccy Villacoublay (FR)	HLRF (Klystron)	
A. Yam	namoto, LINAC1	2, 120913-	Status of ILC		34

b

ic Mass-Production Studies

in contracts

	Company	Mass production model	Contract funded/hosted by
Cavity	RI	100%. 50%	DESY
	AES	20 %	DOE/Fermilab
	MHI	20, 50, 100%	KEK
Quadrupole	Toshiba	100 %	KEK
CM and assembly	Hitachi	20, 50, 100%	KEK
	AES	25%	DOE/Fermilab
CM assembly	BN	100, 33 %	CERN

In parallel, EXFEL experience kindly informed by DESY, INFN, CEA/Saclay, and CERN is contributing to SCRF and CFS, based on LHC experience

Cavity Fabrication Facility at KEK As a laboratory's production R&D effort

A. Yamamoto, LINAC12, 120913b

Status of ILC

36

TDR Technical Volumes

ir

ic Technical Efforts beyond TDR

- Extended Basic R&D efforts:
 - Cavity: <u>High-gradient and high Q</u> development as well as higher yield for mass production
 - CM: Less degradation after CM assembly
 - Superconducting accelerator: <u>operational experience</u>
- Cost effective production/industrialization studies

- With plug-compatible cavity design and fabrication

- Continued progress in SRF gradient : breakthrough of 45 MV/m in 1-cell, ~60 MV/m record; 45 MV/m in 9-cell
- GDE began in 2005: produce a design for ILC and coordinate worldwide R&D efforts
- New SRF Test Facilities in operation: STF at KEK and NML at Fermilab
- Upgrade of CEBAF to 12 GeV underway at Jefferson Lab (80 cavities)
- FLASH operation and construction of European XFEL underway (640 cavities)

A. Yamamoto, LINAC12, 120913-

b

Summary

- ILC can be built, based on the TDR technology.
- Multiple scenarios may be considered:
 - Realize Full energy (500 GeV) machine, extendable up to 1 TeV,
 - Staging to reach 500 GeV, and extendable up to 1 TeV
 - ILC construction requires 10 years. Start of the construction in coming 5 year will be anticipated to realize the ILC by end of 2020's (before 2030).

Further works beyond TDR

- Industrialization to be further prepared in communication with industry
- Basice R&Ds extended for cost-effective construction/production, and for 1 TeV upgrade capability

İİĹ

Appendix

. . .

ML Beam Parameters for Various Operating Scenarios

Parameter	Unit					TDR baseline	Lı	ıminosity upgrade	7 Ene upg	ergy rade
Center-of-mass energy	GeV	200	230	250	350	500		500	1000	1000
Beam energy	GeV	100	115	125	175	250		250	500	500
Collision rate	Hz	5	5	5	5	5		5	4	4
Electron linac rate	Hz	10	10	10	5	5		5	4	4
Number of bunches		1312	1312	1312	1312	1312	\Rightarrow	2625	2450	2450
Electrons/bunch	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0		2.0	1.74	1.74
Positrons/bunch	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0		2.0	1.74	1.74
Bunch separation	ns	554	554	554	554	554		366	366	366
Bunch separation $\times \lambda_{RF}$		720	720	720	720	720		476	476	476
Pulse current	mA	5.8	5.8	5.8	5.8	5.8		8.75	7.6	7.6
RMS bunch length	mm	0.3	0.3	0.3	0.3	0.3		0.3	0.250	0.225

A. Yamamoto, LINAC12, 120913b

Baseline ML Beam Parameters for 500 GeV CMS operation

Parameter	Value	Unit
Initial beam energy	15	${\rm GeV}$
Final beam energy	250	${\rm GeV}$
Particles per bunch	$2.0 imes10^{10}$	
Beam current	5.8	$\mathbf{m}\mathbf{A}$
Bunch spacing	554	\mathbf{ns}
Bunch train length	727	μs
Number of bunches	1312	
Pulse repetition rate	5	Hz
Initial $\gamma \epsilon_x$	8.4	μm
Final $\gamma \epsilon_x$	9.4	μm
Initial $\gamma \epsilon_y$	24	$\mathbf{n}\mathbf{m}$
Final $\gamma \epsilon_y$	34	$\mathbf{n}\mathbf{m}$
σ_z	0.3	$\mathbf{m}\mathbf{m}$
Initial σ_E/E	1.6	%
Final σ_E/E	0.11	%
Bunch phase relative to RF crest	5	degrees

ILC possible timeline

