

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

ARIEL Superconducting Electron Linac for Rare Isotope Program at TRIUMF

LINAC'12, Tel Aviv, Israel, 2012 Sept 12

Shane Koscielniak for e-linac team

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

- Motivation: RIB science at ISAC
- Challenges of high-power CW SRF
- ARIEL Civil Construction
- E-linac progress if time pemits
- Conclusion

ARIEL triples RIB science at ISAC

10-Year Vision: expanded RIB program with: three simultaneous beams increased number of hours delivered per year new beam species increased beam development capabilities Implementation: Complementary electron linac driver for photo-fission New target stations and front end New proton beamline Staged installation 3

Photofission

E-Linac Physics Requirements

Number of photo-fission /second versus electron energy for 100 kW e-beam on Ta convertor and U target.

For in-target fissions up to 5×10¹³/s

Photo-fission products distribution using 50 MeV 10 mA electrons on Hg convertor & UC_x target

nd	Beam power (MW)	0.5
	Duty Factor	100%
to 🖣	Average current (mA)	10
	Kinetic energy (MeV)	50

E-Linac: Accelerator Overview

E-Linac in e-hall

Adapt existing equipment designs when possible

E-linac funding is based on the condition that it be useful to the nuclear physics AND high energy physics (e.g. ILC).

- Moreover, a design tenet was to adopt or adapt existing equipment design wherever possible.
- Hence the building block is a modified TTF style 9-cell cavity.

Challenges of CW operation

 Higher heat load in all RF components: cavity, input coupler, HOM absorber, etc

Limited choice of c.w. klystrons, c.w. couplers

		Fission driver, 10 MV/m 4 cavity	ERL mode 20 MV/m 4 cavity	TESLA TDR 23.4 MV/m 12 cavity	
ſ	RF Load (W)	41.6	166.4	4.95	
ر {	2K Sum (W)	44.4	251.5	9.05	
	5K Sum (W)	29.1	34.5	15.94	[Boam
	Input Couplers	713	265	80.9	power
	80K Sum (W)	717.6	601.2	183.02	related

9

Challenges of CW operation

- TESLA/ILC poster child for high gradient & low duty factor.
 Static heat load >> dynamic load
- Cryomodule design emphasis: "keep the heat out"
- •ARIEL e-linac, and Cornel ERL Injector, are poster children for high-power CW electron linacs.
- Dynamic heat load >> static load.
- Cryomodule design emphasis: "get the heat out"
- Larger diameter chimney to 2-phase pipe*
- Slightly larger diameter LHe jacket
- No 4K thermal shield not cost effective
- *c.f. BESSY FEL CM: heat-flow <1 W/cm^2 at 1.8 K

High-power CW input couplers

RF Couplers are a heat load both to the cavity and to themselves.
This is a problem already solved by Cornell since 2007.

S. Belomestnykh: Cryomodules for high current CW linacs and ERLs; 2007 July 26

Choice of cold tuner

CW low gradient operation has benefits

- No periodic beam-load transients & small Lorentz-force detuning
- No need for piezo actuators

1.4

- Small number of cavities, makes elinac vulnerable to loss of a cold tuner.
- To mitigate risk, a warm tuner drive was chosen to operate a modified Jefferson lab screw jack tuner.

Scissor tuner

- •Use Cornell coupler \rightarrow must increase pipe OD c.f. TTF cavity
- •For the single-pass RIB beam, low bunch charge (16pC) \rightarrow marginal (or no) need for HOM damping
- BUT dream of adding recirculation
 Inner 7 cells TTF geometry
 Modified end groups for
 Inner 8 HOM damping
- HOM damping target set by Regenerative (2-pass) BBU instability
- 20-40mA BBU threshold if
 (R/Q)Q<10⁷ for all modes

Cavity Shape

Calculated HOMs spectra for variety of geometries with SLANS and CST $\mu\lambda$

"Tuner side" SS ring damper

Coupler side C-Si ring damper

Tuner side	Inner 7 cells	Coupler side
39	35	48
48	35	48
55	35	48
39	37	48
55	40	48

Iris radii (mm)

ARIEL E-linac, LINAC 12, 2012 Sep 14

Cavity & HOM Damping

HOM frequency spectrum and shunt resistance for 9-cell cavity

39/35/48 mm iris geometry gives the lowest maximal (Rd/Q)×Q_L
 Damping by SS ring on coupler end, CESIC ring on tuner end
 All modes (Rd/Q)×Q_L < 2×10⁶ ohm

Cavity Status

2011 Dec Success: 7 out of 7 PAVAC/TRIUMF single-cells meet Q0 requirements

7 cell Cu cavity delivered 2012 Feb
Nine cell cavity design fixed & tooling optimized
Four Nb cells formed and welded
9-cell delivery 2012 Dec

Injector Cryomodule

Cryomodule concept borrows significantly from ISAC-II

Top loading box concept with cavity mounted to strongback that is suspended from struts

Box gives headroom for on-board 2K/4K HX and 4K separator

- All procurements in handFabrication underway
- Cavity, 4K/2K insert (95%)

ARIEL E-linac, LINAC 12, 2012 Sep 14 done)

EINJ: Injector Cryomodule Detailing

Accelerator Cryomodule

 Single-cavity EINJ prototypes most features of two-cavity EACA design.
 2011 June: focus narrowed to completion of EINJ design, and fabrication in 2012

Warm/cold Transition Ends

ARIEL Civil Construction

Site Preparation: demolition, relocation, construction

2011 October CONGESTED SITE Old Stores & RH Demolition Excavation and shoring Makes way for ARIEL building **New GHe** compressor ACCELERATOR BUILDING REMOT building ANDL ARIEL COMPRESSOR/ CHANGE ROOMS **IKE STORAGE** BADGE ROOM ADMINISTRATION **New Stores building** STORES **New Badge**

building IEL E-linac, LINAC 12, 2012 Sep 14

Ground Breaking: 2011 March

Completion: 2011 September

New Badge Building

Construction started: 2011 August

Occupancy: 2011 November

ARIE

Helium Compressor Building

Envelope cladding, roof, mech & elec services 2012 Sept 03
Expect occupancy: 2012 December

ARIEL E-linac, LINAC 12, 2012 Sep 14

ARIEL building design

The culmination of an intensive study of what is needed to facilitate smooth and routine RIB delivery.

ARIEL layout

Excavation, Shoring, Construction

Excavation started: 2011 November

ARIEL site: 2012 May

Tunnel -

ARIEL site: 2012 Aug 29

Building occupancy expected: 2013 April

Electron Hall Renovation: shielding

North Wall: shield e-hall from BL4N

South wall B2 up to ground for ERL/RLAFinal pour, 2012/April

2012 July 31: Site of future proton BL4N

RTRIUMF

Electron Hall Renovation: crane, catwalks,etc

E-hall 2012 March 13

Breakthrough from ARIEL tunnel to E-hall, July 7th

E-hall 2012 Sept 03, prior to sealing roof beams

Expect E-hall occupancy 2012 October

Siemens 12.47 kV Switchgear, factory test 2012 Aug 23

E-linac Progress Report

Electron Gun Components

34

SF6 vessel & Gun RF modulation

Successful dielectric waveguide R&D program with scale model & HFSS

Transmission optimized at 650 MHz

300 kV 10 mA Electron Gun Gun Status

Most long lead items deliveredSF6 vessel tender package released: 2012 Sept

TRIUMF

Electrode polishing under way

Installation begins: 2012 Dec

Cryogenic System Design/Procurement

White boxes: TRIUMF responsibility

 Pale blue boxes: cryoplant ordered from Air Liquide Advanced Technology, 2011 Oct

ARIEL E-linac, LINAC 12, 2012 Sep 14

Supplied by ALAT

Helial Cold Box

Figure 6 : CSD 82 View

Recovery Compressor

Schedule 2013 March: ALAT cryoplant at TRIUMF 2013 October: commissioned

Successful Final Design Review concluded 2012 May15

ARIEL E-linac, LINAC 12, 2012 Sep 14

Cryo-plant specs

The plant shall demonstrate 3 modes: Mixed Mode: >130W @ 4,6K and 242 L/h Liquefaction: 288 L/h at 4.6K in the dewar Refrigeration: 600W at 4.6K in the dewar

ALAT Helial-2000 cold box ³⁹

- Dewar in hand; will widen neck
- He Purifier- procure in collaboration with FNAL
- LHe Distribution System: tender issued 2012 Aug
- 2K sub-atmospheric components:
 - Pumps: contract awarded 2012 Aug
 - He heaters: prototyping

Accelerator cryomodules

Fabrication 2012 Aug 02

He buffer tanks modeled on ISAC-II Tanks rated 15 Bara Capacity ~113 m³ each Delivery 2013 Jan

Sub-atmospheric pumps

	Phase1	Phase2	
ICM	1.9gm/sec	1.9gm/sec	
ACM1	3.7gm/sec	3.7gm/sec	
ACM2	NA	3.7gm/sec	
Sub-total	5.6gm/sec	9.3gm/sec	
Total	5.6gm/sec	9.3gm/sec	

BUSCH –Combi DS3010-He
Dry technology – roots blower
& screw type backing pump
Four units ordered 2012 Aug
Delivery 2013 February

High Power RF staging: 5mA, 25 MeV in 2014

30 kW IOT Transmitter

IOT transmitter will be used for EINJ beam test 2013 Jan;RF input coupler conditioning (10kW) 2012 March onward

2011 June: Tube operated tube in excess of 30kW
2011 July: Successful acceptance tests: ran cw at 30 kW for 24 hours, at 25kW for 40 hours and at 20 kW for 7 days without trip.
Now running routinely

Coupler Conditioning Stand in ISAC/VECC test area

RIUMF

1.3 GHz 290 kW klystron & HVPS procurement

Require 200kW cw for EACA (2-cavity) cryomodule

- 2011 Aug: 290kW Klystron ordered from CPI, USA
- Coordinated purchase with Helmholtz Zentrum Berlin
- 2012 Aug: Final design review
- 2013 Jan: klystron factory test

600kW 65kV Power Supply

- 2012 Feb: Tender issued
- 2012 June: Awarded Thomson Broadcast
- 2012 Aug: Preliminary design review

Conclusion

- Outstanding Progress Across All Areas
 Buildings Construction on schedule for 2013 April
- Injector Cryomodule beam test on schedule for 2013 March
- Accelerator Cryomodule beam test on schedule for 2014 June

ELBT at ISAC/VECC test stand

RIUMF VECC ELBT Test1 – 2011 Dec/2012 Feb

Chromox Target: ~0.3µA Beam Current - Solenoid Scan

Allison emittance scans performed 2012 Feb 09 onward up to to 660W beam power at ~20W/mm

inac, LINAC 12, 2012 Sep 14

VECC ELBT Test2 – 2012 July

Fast Faraday Cup (8 mA peak current) Bunch length \approx 200 ps, consistent with estimate by conduction angle.

Deflector Commissioning

Phase locked to Gun RF
Scan buncher phase/amplitude and observe beam movement in spectrometer

270 deg – Open loop

