Keyword: PLC
Paper Title Other Keywords Page
MOPME044 Upgrade of the Machine Interlock System for the ELBE Accelerator Facility vacuum, electron, controls, status 469
 
  • M. Justus, M. Freitag, B. Lange, P. Michel, W. Sorge, R. Steinbrück, H. Tietze
    HZDR, Dresden, Germany
 
  The ELBE facility with its 40 MeV C.W. LINAC has recently received an upgrade in terms of new secondary radiation sources and beam lines, while advancing the accelerator infrastructure towards 1.6 mA C.W. operation (1.0 mA before). Therefore, the machine interlock system (MIS) was redesigned in parts to meet the new timing requirements resulting from the increased overall beam power. It comprises fast beam loss detection and a PLC based beam line equipment protection system (EPS), both tripping the key components of the electron sources. The former tripping system using PLC interrupts was replaced by an in-house developed staggered CPLD based system with optical transmission and a PROFINET IO interface for control system integration. The EPS is distributed on several PLCs and has been improved in terms of M2M communication. Further, the vacuum inrush protection was completely renewed using brought-in equipment. This contribution depicts the technical features and performance of the MIS subsystems, as well as the actual status within the upgrade project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPRI047 UK Industrial Development of Manufacturing Techniques for Superconducting RF Cavities cavity, niobium, electron, superconducting-RF 2586
 
  • A.E. Wheelhouse, R.K. Buckley, L.S. Cowie, P. Goudket, A.R. Goulden, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.R. Everard, N. Shakespeare
    Shakespeare Engineering, South Woodham Ferrers, Essex, United Kingdom
 
  An STFC Innovation Partnership Scheme (IPS) grant, funding Daresbury Laboratory and Shakespeare Engineering Ltd to develop the capability to fabricate, process and test a 9-cell 1.3 GHz superconducting RF cavity in support of enabling UK industry to address the large potential market for superconducting RF structures. At the heart of the development are the repeatability and the reproducibility of the manufacturing process in an effort to reduce the costs. Effort has been spent on developing the techniques to fabricate the niobium half cells and the beam pipes and this paper discusses the manufacturing processes and the results obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-WEPRI047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO115 Control System Design Considerations for MYRRHA ADS controls, EPICS, network, software 3162
 
  • R. Modic, G. Pajor, K. Žagar
    Cosylab, Ljubljana, Slovenia
  • L. Medeiros Romão, R. Salemme, D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  The accelerator (ACC) is the first step of the accelerator driven system (ADS). A high power continuous wave ACC is required for ADS applications. An essential aspect of ACC is beam availability. It must be an order of magnitude better than current best systems. High availability is achieved by fault tolerance and redundancy of the ACC. Three factors play a key role here: use of components in a high MTBF regime, parallel and serial redundancy of components, ability to repair failing elements. In terms of ACC controls system (CS) EPICS and Linux is chosen as proven technology. High availability will be achieved through making parts of the CS redundant. Subsystems shall be redundant by design. If failure of a subsystem is detected, pre-defined scenarios should kick-in. System model or "virtual accelerator" can be implemented to predict effects of parameter change, determine required configuration of set points for optimal performance or re-configuration in case of sub-system failure. Implementation of predictive diagnostics can harvest large amount of data created by archiving service. Prediction of failure allows for controlled shutdown as opposed to abrupt stop.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO117 Infrastructure Controls Integration at ESS interface, controls, operation, monitoring 3168
 
  • D.P. Piso, J. Lundgren, M. Reščič, R. Sjöholm
    ESS, Lund, Sweden
  • T. Ranstorp
    ÅF, Malmö, Sweden
  • R. Schmidt
    CERN, Geneva, Switzerland
 
  The European Spallation Source (ESS) project is starting the construction of buildings June 2014. When the access to linac tunnel and gallery building is ready, the commissioning of the first sections of the accelerator starts. A proper operation of the machine relies on the services provided by different infrastructure systems (water cooling, electrical power system, ventilation, etc.) These systems will be used long before beam operation starts and need to be operated via the Integrated Control System (ICS) from the Control Room. Due to the number and variety of these systems, their heterogeneous characteristics and the different teams of designers, the integration process into ICS is challenging. Experience in other facilities [2,3] shows that a late integration produces higher maintenance and operation costs, and even impact on the reliability of the machine. This paper presents the strategy developed by two partners, the Controls and Conventional Facilities Division (CF). It is planned to capture the requirements for the interfaces and to ensure an early integration of Infrastructure Systems into the EPICS environment. First results of this approach are shown for some systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO118 A PLC Test Bench at ESS EPICS, controls, timing, vacuum 3171
 
  • D.P. Piso, M. Reščič
    ESS, Lund, Sweden
  • G. Cijan
    Cosylab, Ljubljana, Slovenia
  • R. Schmidt
    CERN, Geneva, Switzerland
 
  The European Spallation Source (ESS) is an accelerator- driven neutron spallation source. The Integrated Controls Systems (ICS) is responsible for providing control and mon- itoring for all parts of the machine (accelerator, target, neu- tron scattering systems and conventional facilities) [1]. A large number of applications have been identified across all parts of the facility where PLCs will be used: cryogenics, vacuum, water-cooling, power systems, safety and protec- tion systems. The Controls Division at ESS is deploying a PLC Test Bench. The motivation is to evaluate different technologies, to test PLCs and their integration into EPICS, to prototype control systems and use the test bench as PLC software development platform. This report defines the ar- chitecture of this infrastructure. The first stage to procure a first set of hardware and to perform initial tests has already been finished, consisting of a comparison between the per- formance of the s7plc EPICS driver and the Modbus EPICS driver. The results of these tests are discussed and future plans for this infrastructure are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO126 Implementation of Machine Protection System for the Taiwan Photon Source EPICS, status, controls, vacuum 3189
 
  • C.Y. Liao, J. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, D. Lee, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) is being constructed at the campus of the NSRRC (National Synchrotron Radiation Research Center) and commissioning expected in 2014. In order to prevent damage to accelerator components induced by various events, a global machine protection system (MPS) was installed and implemented. The MPS collect interlocks and beam dump requests from various system (thermo/flow of magnets, front-end, vacuum system, and orbit excursion interlock), perform decision, transmit dump beam request to E-Gun or RF system. The PLC based system with embedded EPICS IOC was used as a slow MPS which can delivery less than 8 msec reaction time. The fast MPS was dependent on event based timing system to deliver response time less than 5 μs. Trigger signal for post-mortem will also be distributed by the fast MPS. To ensure alive of the system, several self-diagnostics mechanisms include heartbeat and transient capture were implemented and tested. The MPS architecture, installation, and validation test results were presented in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRI097 A Retrospective View to the Magnet Interlock Systems at CERN operation, interlocks, software, linac 4001
 
  • I. Romera, P. Dahlen, R. Mompo, B. Puccio, M. Zerlauth
    CERN, Geneva, Switzerland
 
  Several thousands of both, superconducting and normal conducting magnets are in charge of guiding the particle beams in CERN’s accelerator complex. In order to protect the magnet and powering equipment from damage, dedicated magnet interlock and protection systems are deployed throughout the various accelerators and transfer lines. These systems have worked extremely well during the first years of LHC operation, providing highly dependable interlocking of magnet powering based on industrial COTS components. This paper reviews the performance of the more than 70 individual installations during the first LHC running period and compares the operational experience with the initial expectations of dependability. Additional improvements required to address specific operational needs and observed shortcomings are presented. Finally, we review the existing magnet interlock infrastructure in the LHC injector complex and the ongoing renovation works during the first long shutdown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRI097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)