Keyword: vacuum
Paper Title Other Keywords Page
SUPCAV008 Design and Construction of Nb3Sn Vapor Diffusion Coating System at KEK cavity, radio-frequency, MMI, target 23
  • K. Takahashi, T. Okada
    Sokendai, Ibaraki, Japan
  • H. Ito, E. Kako, T. Konomi, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
  Vapor diffusion Nb3Sn coating system was developed at KEK. At most 1.3GHz 3-cell cavity can be coat with the coating system. The coating system consists of a coating chamber made of Nb, a vacuum furnace for heating the Nb chamber, and a heating device of Tin in the crucible. The Nb chamber vacuum and the furnace vacuum are isolated to prevent contamination from the furnace. There is a heating device for increasing Tin vapor pressure. In this presentation, the design and construction of the coating system are reported.  
poster icon Poster SUPCAV008 [0.986 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV008  
About • Received ※ 21 June 2021 — Accepted ※ 18 November 2021 — Issue date ※ 11 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SUPFDV001 Update on Nitrogen Infusion Sample R&D at DESY niobium, cavity, superconductivity, SRF 57
  • C. Bate, A. Dangwal Pandey, A. Ermakov, B. Foster, T.F. Keller, D. Reschke, J. Schaffran, S. Sievers, H. Weise, M. Wenskat
    DESY, Hamburg, Germany
  • B. Foster
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  Many accelerator projects such as the European XFEL cw upgrade or the ILC, would benefit from cavities with reduced surface resistance (high Q-values) while maintaining a high accelerating gradient. A possible way to meet the requirements is the so-called nitrogen-infusion procedure on Niobium cavities. However, a fundamental understanding and a theoretical model of this method are still missing. The approach shown here is based on R\&D using small samples, with the goal of identifying all key parameters of the process and establishing a stable, reproducible recipe. To understand the underlying processes of the surface evolution that give improved cavity performance, advanced surface-analysis techniques (e.g. SEM/EDX, TEM, XPS, TOF-SIMS) are utilized and several kinds of samples are analyzed. Furthermore, parameters such as RRR and the surface critical magnetic field denoted as Hc3 have been investigated. For this purpose, a small furnace dedicated to sample treatment was set up to change and explore the parameter space of the infusion recipe. Results of these analyses and their implications for the R\&D on cavities are presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPFDV001  
About • Received ※ 22 June 2021 — Accepted ※ 03 January 2022 — Issue date ※ 27 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SUPFDV020 ALD-Based NbIiN Studies for SIS R&D cavity, site, plasma, SRF 109
  • I. González Díaz-Palacio, R.H. Blick, R. Zierold
    University of Hamburg, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  Superconductor-Insulator-Superconductor multilayers improve the performance of SRF cavities providing magnetic screening of the bulk cavity and lower surface resistance. In this framework NbTiN mixtures stand as a potential material of interest. Atomic layer deposition (ALD) allows for uniform coating of complex geometries and enables tuning of the stoichiometry and precise thickness control in sub-nm range. In this talk, we report about NbTiN thin films deposited by plasma-enhanced ALD on insulating AlN buffer layer. The deposition process has been optimized by studying the superconducting electrical properties of the films. Post-deposition thermal annealing studies with varying temperatures, annealing times, and gas atmospheres have been performed to further improve the thin film quality and the superconducting properties. Our experimental studies show an increase in Tc by 87.5% after thermal annealing and a maximum Tc of 13.9 K has been achieved for NbTiN of 23 nm thickness. Future steps include lattice characterization, using XRR/XRD/EBSD/PALS, and SRF measurements to obtain Hc1 and the superconducting gap.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPFDV020  
About • Received ※ 22 June 2021 — Revised ※ 17 August 2021 — Accepted ※ 17 August 2021 — Issue date ※ 19 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SUPTEV007 Development of a System for Coating SRF Cavities Using Remote Plasma CVD cavity, plasma, SRF, controls 129
  • G. Gaitan, P. Bishop, A.T. Holic, G. Kulina, M. Liepe, J. Sears, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  Funding: This work was supported by the National Science Foundation under Grant No. PHY-1549132.
Next-generation, thin-film surfaces employing Nb3Sn, NbN, NbTiN, and other compound superconductors are destined to allow reaching superior RF performance levels in SRF cavities. Optimized, advanced deposition processes are required to enable high-quality films of such materials on large and complex-shaped cavities. For this purpose, Cornell University is developing a remote plasma-enhanced chemical vapor deposition (CVD) system that facilitates coating on complicated geometries with a high deposition rate. This system is based on a high-temperature tube furnace with a clean vacuum and furnace loading system. The use of plasma alongside reacting precursors will significantly reduce the required processing temperature and promote precursor decomposition. A vacuum quality monitor (VQM) is used to characterize the residual gases before coating. The CVD system has been designed and is currently under assembly and commissioning.
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV007  
About • Received ※ 09 July 2021 — Accepted ※ 21 August 2021 — Issue date ※ 10 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
SUPTEV010 Electrical and Thermal Properties of Cold-Sprayed Bulk Copper and Copper-Tungsten Samples at Cryogenic Temperatures cavity, site, SRF, radio-frequency 142
  • H. Pokhrel
    ODU, Norfolk, Virginia, USA
  • G. Ciovati, P. Dhakal, J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, Solon, Ohio, USA
  Funding: Work supported by the U.S. Department of Energy, Office of Science, SBIR grant DE-SC00195589
The development of high thermal conductivity coatings with pure copper or copper-tungsten alloy could be beneficial to improve the heat transfer of bulk Nb cavities for conduction cooling applications and to increase the stiffness of bulk Nb cavities cooled by liquid helium. Cold-spray is an additive manufacturing technique suitable to grow thick coatings of either Cu or CuW on a Nb substrate. Bulk (~5 mm thick) coatings of Cu and CuW were deposited on standard 3 mm thick, high-purity Nb samples and smaller samples with 2 mm x 2 mm cross section were cut for measuring the thermal conductivity and the residual resistivity ratio. The samples were subjected to annealing at different temperatures and a maximum RRR of ~130 and ~40 were measured for the Cu samples and CuW samples, respectively.
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPTEV010  
About • Received ※ 21 June 2021 — Revised ※ 13 August 2021 — Accepted ※ 15 November 2021 — Issue date ※ 21 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOOFAV01 Successful Beam Commissioning of Heavy-Ion Superconducting Linac at RIKEN linac, cavity, acceleration, controls 167
  • K. Yamada, T. Dantsuka, M. Fujimaki, E. Ikezawa, H. Imao, O. Kamigaito, M. Komiyama, K. Kumagai, T. Nagatomo, T. Nishi, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe
    RIKEN Nishina Center, Wako, Japan
  • H. Hara, A. Miyamoto, K. Sennyu, T. Yanagisawa
    MHI-MS, Kobe, Japan
  • E. Kako, H. Nakai, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
  A new superconducting booster linac, so-called SRILAC, has been constructed at the RIKEN Nishina Center to upgrade the acceleration voltage of the existing linac in order to enable further investigation of new super-heavy elements and the production of useful RIs. The SRILAC consists of 10 TEM quarter-wavelength resonators made from pure niobium sheets which operate at 4.5 K. We succeeded to develop high performance SC-cavities which satisfies the required Q0 of 1E+9 with a wide margin. Installation of the cryomodule and He refrigerator system was completed by the end of FY2018, and the first cooling test was performed in September 2019. After various tests of the RF system, the beam acceleration was successfully commissioned in January 2020. In June 2020, the beam supply to the experiment was started. In this talk, I will report on the beam commissioning of SRILAC as well as the status of the frequency tuner and the differential pump system.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV01  
About • Received ※ 26 July 2021 — Revised ※ 30 August 2021 — Accepted ※ 05 March 2022 — Issue date ※ 16 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPTEV005 Commissioning of RF Power Coupler for BISOL R&D Research cavity, MMI, ISOL, SRF 208
  • F. Zhu, S.W. Quan, Z.Q. Yao
    PKU, Beijing, People’s Republic of China
  RF power coupler is a key component of superconducting accelerating system. BISOL (Beijing isotope separation on line type rare ion beam facility) has two superconducting linear accelerators. Half wave resonators (HWRs) are adopted for the high intensity deuteron accelerator, and quarter wave resonators (QWRs) are used to accelerate heavy ions for the post acclerator. For the pre-research of BISOL, we designed a 162.5 MHz RF power coupler which can transmit CW 20 kW power for HWR cavities. It can also transmit 1-5 kW 81.25 MHz power for QWR cavity horizontal test study. A prototype of the coupler has been fabricated and proceeded the high power conditioning.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV005  
About • Received ※ 21 June 2021 — Revised ※ 29 September 2021 — Accepted ※ 17 January 2022 — Issue date ※ 21 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPTEV006 Synchrotron XPS Study of Niobium Treated with Nitrogen Infusion niobium, cavity, experiment, synchrotron 211
  • A.L. Prudnikava, J. Knobloch, O. Kugeler, Y. Tamashevich
    HZB, Berlin, Germany
  • V. Aristov, O. Molodtsova
    DESY, Hamburg, Germany
  • S. Babenkov
    LIDYL, Gif sur Yvette, France
  • A. Makarova
    FUB, Berlin, Germany
  • D. Smirnov
    Technische Universität Dresden, Dresden, Germany
  Processing of niobium cavities with the so-called ni-trogen infusion treatment demonstrates the improve-ment of efficiency and no degradation of maximal accelerating gradients. However, the chemical compo-sition of the niobium surface and especially the role of nitrogen gas in this treatment has been the topic of many debates. While our study of the infused niobium using synchrotron X-ray Photoelectron Spectroscopy (XPS) showed modification of the surface sub-oxides surprisingly there was no evidence of nitrogen con-centration build up during the 120°C baking step, irre-spectively of N2 supply. Noteworthy, that the niobium contamination with carbon and nitrogen took place during a prolonged high-temperature anneal even in a high vacuum condition (10-8-10-9 mbar). Evidently, the amount of such contamination appears to play a key role in the final cavity performance  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV006  
About • Received ※ 21 June 2021 — Revised ※ 13 July 2021 — Accepted ※ 19 August 2021 — Issue date ※ 05 September 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPTEV007 RF Conditioning of 120 kW CW 1.3 GHz High Power Couplers for the bERLinPro Energy Recovery Linac cavity, booster, SRF, operation 216
  • A. Neumann, W. Anders, A. Frahm, F. Göbel, A. Heugel, S. Klauke, J. Knobloch, M. Schuster, Y. Tamashevich
    HZB, Berlin, Germany
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
This year, the commissioning of the 50 MeV, 100 mA bERLinPro Energy Recovery Linac test facility [1] will resume. For the Booster cryo-module of the injector line, operated with three modified 1.3 GHz Cornell style 2-cell SRF cavities, a new type of power coupler was developed, based on KEK’s C-ERL injector coupler. Modifications were made for a stronger coupling and lower emittance diluting coupler tip variant, a so-called "Golf Tee" shape and the cooling concept was redesigned based on KEK’s first experiences. For the final stage, the injector needs to deliver a low emittance beam of 100 mA average beam current at 6.5 MeV. That results in a traveling and continuous wave forward power requirement of up to 120 kW each of the twin setup feeding one Booster cavity. In this contribution we will give a short overview of the RF design and its impact on the beam’s emittance, give an overview of the conditioning teststand and the results achieved with the first pairs of couplers.
[1] M. Abo-Bakr et al., in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, BC, Canada, Apr. 4,, pp. 4127-4130, doi:10.18429/JACoW-IPAC2018-THPMF034
poster icon Poster MOPTEV007 [2.466 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV007  
About • Received ※ 19 June 2021 — Accepted ※ 19 August 2021 — Issue date ※ 17 January 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPCAV006 High-Q/High-G R&D at KEK Using 9-Cell TESLA-Shaped Niobium Cavities cavity, SRF, niobium, experiment 268
  • R. Katayama, A. Araki, H. Ito, E. Kako, T. Konomi, S. Michizono, M. Omet, K. Umemori
    KEK, Ibaraki, Japan
  We will report on the current progress of High-Q/High-G R&D using three 1.3 GHz 9-cell TESLA shape niobium superconducting cavities at the High Energy Accelerator Research Organization (KEK). These cavities are made of bulk niobium of fine grain material with RRR >300 and have been annealed at 900 degrees for 3 hours. The cavity performances were evaluated at the Superconducting RF Test Facility at KEK (KEK-STF) after 2-step bake (70-75°C 4 h + 120°C 48 h), electropolishing at low temperature, and fast cooling procedure were applied to these cavities. In this study, obtained results will be compared with the baseline measurement for the standard recipe at KEK.  
poster icon Poster MOPCAV006 [1.880 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPCAV006  
About • Received ※ 22 June 2021 — Revised ※ 14 January 2022 — Accepted ※ 22 February 2022 — Issue date ※ 28 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPFAV005 Operation Experience of the Superconducting Linac at RIKEN RIBF radiation, cavity, operation, linac 315
  • N. Sakamoto, H. Imao, O. Kamigaito, T. Nagatomo, T. Nishi, K. Ozeki, K. Suda, A. Uchiyama, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  After commissioning of the RIKEN superconducting linac (SRILAC) in the end of FY2019, heavy ion beams were provided to the nuclear physics experiments. In this paper operation history and evolution of field emission levels through the year will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPFAV005  
About • Received ※ 02 July 2021 — Accepted ※ 27 October 2021 — Issue date ※ 10 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
MOPFDV008 SRF Levitation and Trapping of Nanoparticles cavity, SRF, experiment, niobium 331
  • R.L. Geng
    ORNL, Oak Ridge, Tennessee, USA
  • P. Dhakal, B.J. Kross, F. Marhauser, J.E. McKisson, J. Musson, H. Wang, A. Weisenberger, W.Z. Xi
    JLab, Newport News, Virginia, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences & Office of Nuclear Physics.
A proposal has been conceived to levitate and trap mesoscopic particles using radio frequency (RF) fields in a superconducting RF(SRF) cavity. Exploiting the intrinsic characteristics of an SRF cavity, this proposal aims at overcoming a major limit faced by state-of-the-art laser trapping techniques. The goal of the proposal is to establish a foundation to enable observation of quantum phenomena of an isolated mechanical oscillator interacting with microwave fields. An experiment supported by LDRD funding at JLab has started to address R&D issues relevant to these new research directions using existing SRF facilities at JLab. The success of this experiment would establish its groundbreaking relevance to quantum information science and technology, which may lead to applications in precision force measurement sensors, quantum memories, and alternative quantum computing implementations with promises for superior coherence characteristics and scalability well beyond the start-of-the-art. In this contribution, we will introduce the proposal and basic consideration of the experiment.
poster icon Poster MOPFDV008 [0.599 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPFDV008  
About • Received ※ 10 June 2021 — Accepted ※ 30 September 2021 — Issue date ※ 02 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPCAV013 STC Qualification Tests of PIP-II HB650 Cavities cavity, cryomodule, SRF, LLRF 465
  • A.I. Sukhanov, S.K. Chandrasekaran, G.V. Eremeev, F. Furuta, S. Kazakov, T.N. Khabiboulline, T.H. Nicol, Y.M. Pischalnikov, O.V. Prokofiev, V. Roger, G. Wu, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
  Design of the high beta 650 MHz prototype cryomodule for PIP-II is currently undergoing at Fermilab. The cryomodule includes six 5-cell elliptical SRF cavities with accelerating voltage up to 20 MV and low heat dissipation (Q0 > 3.3 · 10zEhNZeHn). Characterization of performance of fully integrated jacketed cavities with high power coupler and tuner is crucial for the project. Such a characterization of jacketed cavity requires a horizontal test cryostat. The Fermilab Spoke Test Cryostat (STC) has been upgraded to accommodate testing of 650 MHz cavities. Commissioning of upgraded STC has been reported at SRF’19 conference. In this paper we present results of testing of the prototype HB650 cavity in upgraded STC facility. We characterize cavity performance and qualify it for the prototype HB650 cryomodule assembly.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV013  
About • Received ※ 21 June 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPTEV005 PIP-II 650 MHz Power Coupler Thermal Studies cryomodule, cavity, radiation, GUI 490
  • H. Jenhani, S. Arsenyev
    CEA-IRFU, Gif-sur-Yvette, France
  • S. Kazakov, N. Solyak
    Fermilab, Batavia, Illinois, USA
  The Proton Improvement Plan - II (PIP-II) project is underway at Fermilab with an international collaboration involving CEA in the development and testing of 650 MHz cryomodules. One of the first main contributions of the CEA was the participation in the design efforts for the current 50 KW CW 650 MHz power couplers. This paper reports some of the results of thermal and paramet-ric studies carried out by the CEA on these power couplers  
poster icon Poster TUPTEV005 [0.806 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV005  
About • Received ※ 21 June 2021 — Revised ※ 08 February 2022 — Accepted ※ 15 February 2022 — Issue date ※ 03 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPTEV017 Processing and Test Result of 650 MHz 50 kW CW Prototype Couplers for PIP-II Project GUI, cavity, multipactoring, cryomodule 526
  • N. Solyak, B.M. Hanna, S. Kazakov
    Fermilab, Batavia, Illinois, USA
  For PIP-II project Fermilab is developing 650 MHz couplers to deliver up to 50 kW CW RF power to the superconducting low-beta (LB650) and high-beta (HB650) cavities. To meet project requirements two different designs of the couplers were proposed, one is conventional design with copper plated stainless steel walls. In second design (EM-shielded) a copper screen is used to shield stainless steel wall from electromagnetic field. For prototyping we built two couplers of each type and tested them at 50kW with full reflection at different reflection phases. In each test the assembly of two couplers were processed with DC bias up to +5 kV, starting with short pulses and ramping power up to 100 kW. Final run for 2 hours in CW mode at 50 kW to reach equilibrium temperature regime and qualify couplers. One pair of couplers was also processed without DC bias. Finally, all four couplers demonstrated full requirements and were qualified. Based on test results the conventional coupler with some modification was chosen as a baseline design. Modified version of coupler is now ordered for prototype of HB650 cryomodule. In paper we will discuss details of coupler processing and results  
poster icon Poster TUPTEV017 [2.211 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV017  
About • Received ※ 21 June 2021 — Revised ※ 06 August 2021 — Accepted ※ 19 November 2021 — Issue date ※ 08 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
TUPTEV018 Status of RF Power Coupler for HWR in RISP cryomodule, cavity, simulation, status 531
  • S. Lee, M. Lee, Y.U. Sohn
    IBS, Daejeon, Republic of Korea
  • Y.U. Sohn
    PAL, Pohang, Republic of Korea
  Funding: This work was supported by the Rare Isotope Science Project of Institute for Basic Science funded by Ministry of Science and ICT and NRF of Korea 2013M7A1A1075764.
A heavy-ion accelerator facility is under construction for Rare Isotope Science Project(RISP) in Korea. Four types of super conducting cavities, QWR, HWR, SSR1, and SSR2 are developed to accelerate the ion beams. The QWR cryomodule is already installed in the tunnel. The HWR cryomodule is transport to the tunnel. Here, the status of HWR RF power coupler is presented. After the fabrication, the coupler is test with high power RF. The some of the test results are described.
poster icon Poster TUPTEV018 [1.740 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV018  
About • Received ※ 21 June 2021 — Revised ※ 09 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 29 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPFAV001 Cryomodule Development for the Materials Irradiation Facility: From IFMIF-EVEDA to IFMIF-DONES cryomodule, cavity, linac, solenoid 534
  • N. Bazin, S. Chel
    CEA-DRF-IRFU, France
  For several years, CEA has been involved in the development of superconducting linac for fusion related project, with the goal to develop an high flux neutrons source to test and qualify specific materials to be used in fusion power plants. In the framework of the ITER Broder Approch, a prototype cryomodule is under construction in Japan for the IFMIF/EVEDA phase(Engineering Validation and Engineering Design Activities) and the construction of the Accelerator Prototype (LIPAc) at Rokkasho, fully representative of the IFMIF low energy (9 MeV) accelerator (125 mA of D+beam in continuous wave). Meanwhile, the design studies of a plant called DONES (Demo Oriented NEutron Source, derived from IFMIF) started, with a superconducting linac made of 5 cryomodules. These one are based on the same principles as the one developed for IFMIF/EVEDA, but taking into account the lessons learnt from the prototype. This paper will present the similarities but also the differences between the cryomodules for IFMIF/EVEDA and DONES.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPFAV001  
About • Received ※ 28 June 2021 — Revised ※ 23 August 2021 — Accepted ※ 23 August 2021 — Issue date ※ 13 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPCAV013 Occurring Dependency between Adjustable Coupling and Q0 - Finding and Solving a Problem during Vertical Cavity Testing at DESY cavity, coupling, SRF, resonance 619
  • Y.F. Liu, C. Luo
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • D. Reschke, L. Steder, M. Wiencek
    DESY, Hamburg, Germany
  In the AMTF (Accelerator Module Test Facility) hall at DESY, various types of cavities have been tested for different accelerators and R&D projects during the last years. For R&D purposes, dedicated inserts with additional auxiliaries like a movable INPUT antenna can be used to perform accurate measurements at different temperatures between 1.4 K and 4 K. Since 2017 more than hundred vertical tests were conducted in these inserts without troubles besides rare expected occurrences of cold leaks or even rarer a loose antenna. However, in the last months, an unexpected dependency between the measured quality factor and the coupling coefficient ß has been observed. In order to understand the source of this measurement uncertainty, several different special checks have been performed. In a logical sequence of measurements with different cryostats, inserts and cavities the problem has been encircled and in the end was identified and solved. In this paper, the observed problem is described in detail as well as the entire path leading to its solution.  
poster icon Poster WEPCAV013 [1.078 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPCAV013  
About • Received ※ 18 June 2021 — Revised ※ 18 October 2021 — Accepted ※ 18 October 2021 — Issue date ※ 22 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPTEV007 Review of the Application Piezoelectric Actuators for SRF Cavity Tuners SRF, cavity, operation, cryogenics 642
  • Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
  Funding: This manuscript has been authorized by Fermi Research Alliance LLC under Contract N. DE-AC02-07CH11359 with U.S. Department of Energy
Large SRF Linacs and HEP experiments require accurate frequency control, which is achieved using cavity tuners typically actuated by the piezoelectric ceramic stacks. The piezoelectric ceramic stacks became ’standard’ components of the SRF cavity tuner and, depending on the application, could be operated in the different environment: in air, at cryogenic temperature, in vacuum, and submerged in liquid helium. Different applications place different requirements on the piezo actuators, but the important parameters, common to all applications, are the lifetime and reliability of the actuators. Several R&D programs targeting the development of reliable piezo actuators are reviewed in this contribution.
poster icon Poster WEPTEV007 [1.220 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV007  
About • Received ※ 22 June 2021 — Revised ※ 27 August 2021 — Accepted ※ 18 September 2021 — Issue date ※ 22 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPTEV009 The 1.5 GHz Coupler for VSR DEMO: Final Design Studies, Fabrication Status and Initial Testing Plans cavity, SRF, HOM, coupling 652
  • E. Sharples-Milne, V. Dürr, J. Knobloch, S. Schendler, A. Veléz, N. Wunderer
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A. Veléz
    Technical University Dortmund, Dortmund, Germany
  The variable pulse length storage ring demo (VSR DEMO) is a research and development project at the Helmholtz Zentrum Berlin (HZB) to develop and validate a 1.5 GHz SRF system capable of accelerating high CW currents (up to 300 mA) at high accelerating fields (20 MV/m) for application in electron storage rings. Such a system can be employed to tailor the bunch length in synchrotron light source such as BESSY II. VSR DEMO requires a module equipped with two 1.5 GHz 4-cell SRF cavities and all ancillary components required for accelerator operations. This includes one 1.5 GHz fundamental power coupler (FPC) per cavity, designed to handle 16 kW peak and 1.5 kW average power. The final design studies, fabrication status and initial testing plans for these FPCs will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV009  
About • Received ※ 21 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 09 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPTEV015 Design of the 650 MHz High Beta Prototype Cryomodule for PIP-II at Fermilab cryomodule, cavity, alignment, SRF 671
  • V. Roger, S.K. Chandrasekaran, S. Cheban, M. Chen, J. Helsper, J.P. Holzbauer, Y.M. Orlov, V. Poloubotko, B. Squires, N. Tanovic, G. Wu
    Fermilab, Batavia, Illinois, USA
  • N. Bazin, O. Napoly, C. Simon
    CEA-DRF-IRFU, France
  • R. Cubizolles, M. Lacroix
    CEA-IRFU, Gif-sur-Yvette, France
  • M.T.W. Kane
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Khare
    RRCAT, Indore (M.P.), India
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan II (PIP-II) is the first U.S. accelerator project that will have significant contributions from international partners. The prototype High Beta 650 MHz cryomodule (pHB650 CM) is designed by an integrated design team, consisting of Fermilab (USA), CEA (France), UKRI-STFC (UK), and RRCAT (India). The manufacturing & assembly of this prototype cryomodule will be done at Fermilab, whereas the production cryomodules will be manufactured and/or assembled by UKRI-STFC, RRCAT, or Fermilab. Similar to the prototype Single Spoke Resonator 1 cryomodule (pSSR1 CM), this cryomodule is based on a strong-back at room temperature supporting the coldmass. The pSSR1 CM led to significant lessons being learnt on the design, procurement, and assembly processes. These lessons were incorporated into the design and processes for the pHB650 CM. Amongst many challenges faced, the main challenges of the pHB650 CM design were to make the cryomodule compatible to overseas transportation and to design components that can be procured in USA, Europe, and India.
poster icon Poster WEPTEV015 [0.937 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV015  
About • Received ※ 21 June 2021 — Revised ※ 28 February 2022 — Accepted ※ 20 April 2022 — Issue date ※ 16 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
WEPTEV017 Transportation Analysis of the Fermilab High-Beta 650 MHz Cryomodule cavity, cryomodule, acceleration, alignment 682
  • J. Helsper, S. Cheban
    Fermilab, Batavia, Illinois, USA
  • I. Salehinia
    Northern Illinois University, DeKalb, USA
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy.
The prototype High-Beta 650 MHz cryomodule for the PIP-II project will be the first of its kind to be transported internationally, and the round trip from FNAL to STFC UKRI will use a combination of road and air transit. Transportation of an assembled cryomodule poses a significant technical challenge, as excitation can generate high stresses and cyclic loading. To accurately assess the behavior of the cryomodule, Finite Element Analysis (FEA) was used to analyze all major components. First, all individual components were studied. For the critical/complex components, the analysis was in fine detail. Afterwards, all models were brought to a simplified state (necessary for computational expenses), verified to have the same behavior as their detailed counterparts, and combined to form larger sub-assemblies, with the ultimate analysis including the full cryomodule. We report the criteria for acceptance and methods of analysis, and results for selected components and sub-assemblies.
poster icon Poster WEPTEV017 [3.164 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV017  
About • Received ※ 21 June 2021 — Revised ※ 27 December 2021 — Accepted ※ 01 March 2022 — Issue date ※ 02 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPFAV002 Fabrication and Installation of Newly Designed Cryostats and Top Flanges for the Vertical Test of RISP cavity, SRF, cryogenics, cryomodule 733
  • M.O. Hyun, M.S. Kim, Y. Kim, J. Lee, M. Lee, J.H. Shin
    IBS, Daejeon, Republic of Korea
  • D.W. Kim, S.R. Kim
    CVE, Suwon, Gyeonggi, Republic of Korea
  Funding: This paper was supported by the Rare Isotope Science Project (RISP), which is funded by the Ministry of Science and ICT (MSIT) and National Research Foundation (NRF) of the Republic of Korea.
Rare Isotope Science Project (RISP) in the Institute of Basic Science (IBS), South Korea, is now operating SRF test facility in Sindong, Daejeon. Sindong SRF test facility has three vertical test pits and three horizontal test bunkers, 900 W cryogenic system, RF power system, and radiation protection system. This paper explains about detail procedures of constructing cryostats and top flanges for the vertical test of RISP, Installed cryostats and top flanges have insulation vacuum layer, magnetic and thermal shield, 4K/2K reservoir, heat exchanger, cryogenic valves for supplying liquid helium, vacuum lines, and electrical instrumentations for the superconducting cavity tests.
poster icon Poster THPFAV002 [2.015 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFAV002  
About • Received ※ 22 June 2021 — Revised ※ 21 August 2021 — Accepted ※ 23 October 2021 — Issue date ※ 22 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPFAV006 Degradation and Recovery of the LHC RF Cryomodule Performance Using the Helium Processing Technique cavity, cryomodule, radiation, operation 746
  • K. Turaj, O. Brunner, A.C. Butterworth, F. Gerigk, P. Maesen, E. Montesinos, F. Peauger, M. Therasse, W. Venturini Delsolaro
    CERN, Meyrin, Switzerland
  The LHC RF cryomodule "Asia" suffered an accidental influx of about 0.5 l of tunnel air during the leak checks of the pumping manifolds. The resulting risk of particle contamination was difficult to assess, and could not be excluded with certainty. If one or more cavities were contaminated, a severe impact on beam operations in the LHC machine was to be expected. In order to minimize the risks, the Asia cryomodule has been replaced with a spare unit. Subsequently, the cryomodule was tested in the SM18 test facility without intermediate venting, and showed high levels of radiation due to field emission above 1.8 MV in one of the cavities. The other cavities were less strongly affected, but clear signs of contamination were observed. The helium processing technique was used to improve the performance of the SRF cavity with respect to field emission. This paper will discuss the results of the above-mentioned test.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFAV006  
About • Received ※ 21 June 2021 — Revised ※ 14 January 2022 — Accepted ※ 27 April 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPFDV003 SIMS Investigation of Furnace-Baked Nb cavity, niobium, SRF, radio-frequency 761
  • E.M. Lechner, M.J. Kelley, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • J.W. Angle, M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • F.A. Stevie
    NCSU AIF, Raleigh, North Carolina, USA
  Funding: U.S. DOE Contract No. DE-AC05-06OR23177
Results recently published by Ito et al. showed that "furnace baking" Nb SRF cavities after electropolishing yields high quality factors and anti-Q-slopes resembling that of N doped cavities. Small Nb samples were prepared following the recipe outlined by Ito. These samples were measured by SIMS to examine impurity contributions to the RF penetration layer. These diffusion profiles are modeled, and their consequences on RF properties discussed.
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFDV003  
About • Received ※ 22 June 2021 — Accepted ※ 24 November 2021 — Issue date ※ 15 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPFDV005 Superconducting RF Performance of Cornell 500 MHz N-Doped B-Cell SRF Cavitiy cavity, SRF, cryomodule, GUI 764
  • M. Ge, T. Gruber, A.T. Holic, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  The Cornell SRF group is working on rebuilding a 500 MHz B-cell cryomodule (CRYO-2 BB1-5) as a spared cryomodule for the operation of the CESR ring. To minimize BCS surface resistance, achieve a high quality-factor (Q0), and increase maximum fields, we prepared the cavity’s surface with electropolishing and performed a 2/6 N2-doping. In this work, we report 4.2 K and 2 K cavity test results with detailed surface resistance analysis, showing improved performance, including significant higher fields.  
poster icon Poster THPFDV005 [0.718 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFDV005  
About • Received ※ 05 July 2021 — Revised ※ 10 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 22 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV001 FPC for RIKEN QWR SRF, linac, Windows, cryomodule 825
  • K. Ozeki, O. Kamigaito, N. Sakamoto, K. Suda, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  In RIKEN, three cryomodules which contain ten SC-QWRs in total (4 + 4 + 2) were constructed, and beam supply has been started since last year. The FPCs for RIKEN QWR have a disk-type single vacuum window at room-temperature region. A vacuum leakage occurred at one FPC, after 4th cool-down test. In addition, second vacuum leakage occurred at another FPC, after starting beam supply. A dew condensation at air side of vacuum window may degrade the brazing of vacuum window. In order to prevent a dew condensation and to restore damaged FPCs, an additional outer vacuum window using machinable ceramics was designed and attached to the FPCs. In this contribution, a structure of the FPC, troubles, provision for those troubles, and plan for reconstruction are reported.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV001  
About • Received ※ 22 June 2021 — Revised ※ 26 November 2021 — Accepted ※ 18 January 2022 — Issue date ※ 12 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV003 LCLS-II Cryomodules Production Experience and Lessons Learned Towards LCLS-II-HE Project cavity, cryomodule, controls, SRF 832
  • T.T. Arkan, D.J. Bice, J.N. Blowers, C.J. Grimm, B.D. Hartsell, J.A. Kaluzny, M. Martinello, T.H. Nicol, Y.M. Orlov, S. Posen, K.S. Premo, R.P. Stanek
    Fermilab, Batavia, Illinois, USA
  Funding: DOE
LCLS-II is an upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLS-II linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting RF (SRF) continuous wave (CW) cryomodules with high quality factor cavities. Cryomodules were produced at Fermilab and at Jefferson Lab in collaboration with SLAC. Fermilab successfully completed the assembly, testing and delivery of seventeen 1.3 GHz and three 3.9 GHz cryomodules. LCLS-II-HE is a planned upgrade project to LCLS-II. The LCLS-II-HE linac will consist of twenty-three 1.3 GHz cryomodules with high gradient and high quality factor cavities. This paper presents LCLS-II-HE cryomodule production plans, emphasizing the improvements done based on the challenges, mitigations, and lessons learned from LCLS-II.
poster icon Poster THPTEV003 [0.620 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV003  
About • Received ※ 21 June 2021 — Revised ※ 11 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 27 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV006 Design of the PIP-II 650 MHz Low Beta Cryomodule cryomodule, cavity, SRF, superconductivity 841
  • N. Bazin, S. Berry, G. Maitre, O. Napoly, C. Simon
    CEA-DRF-IRFU, France
  • S. Bouaziz, R. Cubizolles, M. Lacroix
    CEA-IRFU, Gif-sur-Yvette, France
  • S.K. Chandrasekaran, Y.M. Orlov, V. Roger
    Fermilab, Batavia, Illinois, USA
  The Proton Improvement Plan II (PIP-II) that will be installed at Fermilab is the first U.S. accelerator project that will have significant contributions from international partners. CEA joined the international collaboration in 2018, and is responsible of the 650 MHz low-beta section made of 9 cryomodules, with the design of the cryostat (i.e the cryomodule without the cavities, the power couplers and the frequency tuning systems) and the manufacturing of its components, the assembly and tests of the pre-production cryomodule and the 9 series ones. This paper will present the design of the 650 MHz low-beta cryomodule.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV006  
About • Received ※ 02 July 2021 — Accepted ※ 30 January 2022 — Issue date ※ 01 May 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV011 Experimental Validation of the Use of Cold Cathode Gauge inside the Cryomodule Insulation Vacuum operation, cryomodule, experiment, linac 848
  • H. Jenhani, P. Carbonnier
    CEA-IRFU, Gif-sur-Yvette, France
  The Proton Improvement Plan - II (PIP-II) project is underway at Fermilab with an international collaboration involving CEA in the development and testing of 650 MHz cryomodules. The risk analysis related to cryomodule operation proposed to add a vacuum gauge on the power coupler to prevent the untimely rupture of its ceramic. Due to the advanced design of the cryomodules, the gauge needs to be integrated inside the insulation vacuum to reduce the impact of this new modification. The lack of experience feedback on a similar operating condition requires an experimental validation before the implementation. This article details the experimental tests carried out before the approval of this solution.  
poster icon Poster THPTEV011 [0.664 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV011  
About • Received ※ 21 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 23 November 2021 — Issue date ※ 15 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV012 Substitution of Spring Clamps for Bolts on SRF Cavity Flanges to Minimize Particle Generation cavity, SRF, cryomodule, niobium 853
  • G.H. Biallas
    Hyperboloid LLC, Yorktown, Virginia, USA
  • E. Daly, K. Macha, C.E. Reece
    JLab, Newport News, Virginia, USA
  Funding: Funding supplied by US Department of Energy SBIR Grant #DE-SC0019579
Hyperboloid LLC developed and successfully tested a System of High Force Spring Clamps to substitute, one for one, for bolts on the flanges of SRF Cavities. The Clamps are like exceptionally forceful binder clips. The System, that includes the Hydraulic Openers that apply the clamps, minimizes generation of particulates when sealing cavity flanges. Hyperboloid LLC used ANSYS to design the titanium clamps that generate the force to seal the hexagonal cross section, relatively hard aluminum gasket developed for TESLA and used at JLab and other accelerators. The System is developed to be suitable for use in SRF Clean Rooms. Results of particle counter readings during bolt and clamp installation and superfluid helium challenges to the sealed flanges are discussed. Results of a half-size clamp that could seal a soft aluminum gasket and the attempt to seal a gasket made of niobium are also discussed.
L. Monaco, P. Michelato, C. Pagani, N. Panzeri, Experimental and Theoretical Analysis of Tesla-like SFRF Cavity Flanges, INFN Milano- LASA, I-20090 Segrate (MI), Italy. Proc. EPAC 2006, Edinburgh, SC
poster icon Poster THPTEV012 [1.404 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV012  
About • Received ※ 21 June 2021 — Revised ※ 16 December 2021 — Accepted ※ 28 April 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPTEV017 Status of the LCLS-II-HE Project at Jefferson Lab cavity, cryomodule, SRF, HOM 876
  • K.M. Wilson, J. Hogan, M. Laney, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  Funding: This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 (JSA); and for BES under contract DE’AC02’76SF00515 (SLAC).
The Linac Coherent Light Source II High Energy (LCLS-II-HE) upgrade at the SLAC National Accelerator Laboratory is being constructed in partnership with the Thomas Jefferson National Accelerator Facility (JLab) and the Fermi National Accelerator Laboratory (FNAL). The cryomodule production scope consists of the design, procurement, construction, and acceptance testing of 24 eight-cavity, 1.3 GHz cryomodules, as well as R&D activities necessary to develop the required technology. To achieve this, JLab and FNAL are also contributing to SLAC’s effort to develop the cavity recipe and production processes necessary to meet the LCLS-II-HE goal of 20.8 MV/m and average Q0 of 2.7·1010. This paper details the JLab scope, focusing on the project initiation phase, in particular technology development and prototyping, project development and planning, and implementation of lessons learned from LCLS-II.
poster icon Poster THPTEV017 [1.536 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV017  
About • Received ※ 21 June 2021 — Revised ※ 12 August 2021 — Accepted ※ 02 March 2022 — Issue date ※ 01 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
FROFDV01 Systematic Investigation of Mid-T Furnace Baking for High-Q Performance cavity, niobium, SRF, superconducting-RF 881
  • H. Ito, A. Araki, K. Umemori
    KEK, Ibaraki, Japan
  • K. Takahashi
    Sokendai, Ibaraki, Japan
  We report on an investigation of the effect of a new baking process called "furnace baking" on the quality factor. Furnace baking is performed as the final step of the cavity surface treatment; the cavities are heated in a vacuum furnace in a temperature range of 200-800C for 3 h, followed by high-pressure rinsing and radio-frequency measurement. We find the anti-Q-slope for cavities furnace-baked at a temperature range of 250 to 400C and a reduction in the residual resistance for all cavities. In particular, an extremely high Q value of 5·1010 at 16 MV/m and 2.0 K is obtained for cavities furnace-baked at 300C.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-FROFDV01  
About • Received ※ 21 June 2021 — Accepted ※ 24 February 2022 — Issue date ※ 30 April 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)