Keyword: alignment
Paper Title Other Keywords Page
WEPTEV015 Design of the 650 MHz High Beta Prototype Cryomodule for PIP-II at Fermilab cryomodule, cavity, vacuum, SRF 671
 
  • V. Roger, S.K. Chandrasekaran, S. Cheban, M. Chen, J. Helsper, J.P. Holzbauer, Y.M. Orlov, V. Poloubotko, B. Squires, N. Tanovic, G. Wu
    Fermilab, Batavia, Illinois, USA
  • N. Bazin, O. Napoly, C. Simon
    CEA-DRF-IRFU, France
  • R. Cubizolles, M. Lacroix
    CEA-IRFU, Gif-sur-Yvette, France
  • M.T.W. Kane
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Khare
    RRCAT, Indore (M.P.), India
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Proton Improvement Plan II (PIP-II) is the first U.S. accelerator project that will have significant contributions from international partners. The prototype High Beta 650 MHz cryomodule (pHB650 CM) is designed by an integrated design team, consisting of Fermilab (USA), CEA (France), UKRI-STFC (UK), and RRCAT (India). The manufacturing & assembly of this prototype cryomodule will be done at Fermilab, whereas the production cryomodules will be manufactured and/or assembled by UKRI-STFC, RRCAT, or Fermilab. Similar to the prototype Single Spoke Resonator 1 cryomodule (pSSR1 CM), this cryomodule is based on a strong-back at room temperature supporting the coldmass. The pSSR1 CM led to significant lessons being learnt on the design, procurement, and assembly processes. These lessons were incorporated into the design and processes for the pHB650 CM. Amongst many challenges faced, the main challenges of the pHB650 CM design were to make the cryomodule compatible to overseas transportation and to design components that can be procured in USA, Europe, and India.
 
poster icon Poster WEPTEV015 [0.937 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV015  
About • Received ※ 21 June 2021 — Revised ※ 28 February 2022 — Accepted ※ 20 April 2022 — Issue date ※ 16 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTEV017 Transportation Analysis of the Fermilab High-Beta 650 MHz Cryomodule cavity, cryomodule, vacuum, acceleration 682
 
  • J. Helsper, S. Cheban
    Fermilab, Batavia, Illinois, USA
  • I. Salehinia
    Northern Illinois University, DeKalb, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy.
The prototype High-Beta 650 MHz cryomodule for the PIP-II project will be the first of its kind to be transported internationally, and the round trip from FNAL to STFC UKRI will use a combination of road and air transit. Transportation of an assembled cryomodule poses a significant technical challenge, as excitation can generate high stresses and cyclic loading. To accurately assess the behavior of the cryomodule, Finite Element Analysis (FEA) was used to analyze all major components. First, all individual components were studied. For the critical/complex components, the analysis was in fine detail. Afterwards, all models were brought to a simplified state (necessary for computational expenses), verified to have the same behavior as their detailed counterparts, and combined to form larger sub-assemblies, with the ultimate analysis including the full cryomodule. We report the criteria for acceptance and methods of analysis, and results for selected components and sub-assemblies.
 
poster icon Poster WEPTEV017 [3.164 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2021-WEPTEV017  
About • Received ※ 21 June 2021 — Revised ※ 27 December 2021 — Accepted ※ 01 March 2022 — Issue date ※ 02 May 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)