Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPCAV013 | STC Qualification Tests of PIP-II HB650 Cavities | cavity, vacuum, cryomodule, SRF | 465 |
|
|||
Design of the high beta 650 MHz prototype cryomodule for PIP-II is currently undergoing at Fermilab. The cryomodule includes six 5-cell elliptical SRF cavities with accelerating voltage up to 20 MV and low heat dissipation (Q0 > 3.3 · 10zEhNZeHn). Characterization of performance of fully integrated jacketed cavities with high power coupler and tuner is crucial for the project. Such a characterization of jacketed cavity requires a horizontal test cryostat. The Fermilab Spoke Test Cryostat (STC) has been upgraded to accommodate testing of 650 MHz cavities. Commissioning of upgraded STC has been reported at SRF’19 conference. In this paper we present results of testing of the prototype HB650 cavity in upgraded STC facility. We characterize cavity performance and qualify it for the prototype HB650 cryomodule assembly. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV013 | ||
About • | Received ※ 21 June 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 October 2021 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTEV012 | Progress and Preliminary Statistics for the ESS Series Spoke Cryomodule Test | cavity, cryomodule, SRF, controls | 512 |
|
|||
The European spallation source (ESS), as a world-class high power proton accelerator facility, will be the first one to adopt 26 double spoke resonators (DSR) at its low energy section. As a new superconducting accelerating structure, these DSRs are therefore considered key technology and a challenge for the whole project. They will be the first DSRs in the world to be commissioned for a high power proton accelerator. Since 2019, FREIA Laboratory, Uppsala university, has successfully tested the first DSR prototype cryomodule and is now in charge of the acceptance tests of the ESS series cryomodules prior to installation in the tunnel. The cryomodule test, including cryogenic and RF testing, verifies operation of the cavities, couplers and cold tuning systems. This poster will present the test results for the ESS series spoke cryomodules, including preliminary statistics, experience in general. | |||
![]() |
Poster TUPTEV012 [0.898 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPTEV012 | ||
About • | Received ※ 21 June 2021 — Revised ※ 18 December 2021 — Accepted ※ 06 May 2022 — Issue date ※ 06 May 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPFAV005 | LCSL-II Cryomodule Testing at Fermilab | cryomodule, cavity, EPICS, operation | 741 |
|
|||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Cold powered testing of all LCLS-II production cryomodules at Fermilab is complete as of February 2021. A total of twenty-five tests on both 1.3 GHz and 3.9 GHz cryomodules were conducted over a nearly five year time span beginning in the summer of 2016. During the course of this campaign cutting-edge results for cavity Q0 and gradient in continuous wave operation were achieved. A summary of all test results will be presented, with a comparison to established acceptance criteria, as well as overall test stand statistics and lessons learned. |
|||
![]() |
Poster THPFAV005 [1.383 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPFAV005 | ||
About • | Received ※ 22 June 2021 — Revised ※ 24 November 2021 — Accepted ※ 05 January 2022 — Issue date ※ 01 March 2022 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPTEV008 | Development of a Digital LLRF System for SRF Cavities in RAON Accelerator | cavity, controls, SRF, cryomodule | 845 |
|
|||
An ion accelerator, RAON is planned and under construction in Daejeon, Korea by Rare Isotope Science Project (RISP) team in Institute of Basic Science (IBS). The purpose of this accelerator is the generation of rare isotope by ISOL (Isotope Separation On-Line) and IF (In-flight Fragmentation) method. To achieve this goal RAON adopted the superconducting cavities at three different frequency (81.25 MHz, 162.5 MHz and 325 MHz) and their RF field will be controlled independently for the acceleration of ions with various A/q. A solid state power amplifier and a low level RF (LLRF) controller pairs are under development to generate and to control the RF for the cavities. Recently the development and evaluation of the digital-based LLRF have been performed. For the operation and test of SRF cavities, self-excited loop (SEL) and generator-driven-resonator (GDR) algorithm is digitally implemented and its test was performed. In this paper the status and test result of RAON LLRF controller will be described. | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV008 | ||
About • | Received ※ 21 June 2021 — Revised ※ 30 August 2021 — Accepted ※ 26 September 2021 — Issue date ※ 23 November 2021 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||