Keyword: sextupole
Paper Title Other Keywords Page
MOPOST004 Beam-Based Measurement of Skew-Sextupole Errors in the CERN Proton Synchrotron coupling, dipole, resonance, proton 46
 
  • S.J. Horney, A. Huschauer, E.H. Maclean
    CERN, Meyrin, Switzerland
 
  During Proton Synchrotron (PS) commissioning in 2021, large beam losses were observed when crossing the 3Qy resonance if the Beam Gas Ionization (BGI) profile monitor was enabled. This indicated the presence of a strong skew-sextupole source in this instrument. Beam-based measurements of the skew sextupole component in the BGI magnet were performed, in order to benchmark the BGI magnetic model and to provide quantitative checks of sextupole corrections determined empirically to minimize the beam-losses. In this contribution, results of the successfully performed measurements are presented, including tune feed-down, chromatic coupling and resonance driving terms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST004  
About • Received ※ 08 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST049 Electron Cloud Build-Up for the Arc Sextupole Sections of the FCC-ee electron, collider, simulation, vacuum 191
 
  • J.E. Rocha Muñoz, G.H.I. Maury Cuna
    Universidad de Guanajuato, División de Ciencias e Ingenierías, León, Mexico
  • K.B. Cantún-Ávila
    UADY, Mérida, Yucatán, Mexico
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Funding: Consejo Nacional de Ciencia y Tecnología (CONACyT) - México
In particle accelerators that operate with positrons, an electron cloud may occur due to several mechanisms. This work reports preliminary studies on electron cloud build-up for the arc sextupole sections of the positron ring of the FCCe+e using the code PyECLOUD. We compute the electron cloud evolution while varying strategic parameters and consider three simulation scenarios. We report the values of the central density just before the bunch passage, which is related to the single-bunch instability threshold and the electron density threshold for the three scenarios. In addition, we compare the simulated electron distribution across the central circular cross-section for a chamber with and without winglets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST049  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST050 Third-Order Resonance Compensation at the FNAL Recycler Ring resonance, proton, experiment, operation 195
 
  • C.E. Gonzalez-Ortiz
    MSU, East Lansing, Michigan, USA
  • R. Ainsworth
    Fermilab, Batavia, Illinois, USA
  • P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  The Recycler Ring (RR) at the Fermilab Accelerator Complex performs slip-stacking on 8 GeV protons, doubling the beam intensity delivered to the Main Injector (MI). At MI, the beam is accelerated to 120 GeV and delivered to the high energy neutrino experiments. Femilab’s Proton Improvement Plan II (PIP-II) will require the Recycler to store 50% more beam. Simulations have shown that the space charge tune shift at this new intensity will lead to the excitation of multiple resonance lines. Specifically, this study looks at normal sextupole lines 3 Qx=76 and Qx+2Qy=74, plus skew sextupole lines 3 Qy=73 and 2 Qx+Qy=75. Dedicated normal and skew sextupoles have been installed in order to compensate for these resonance lines. By measuring and calculating the Resonance Driving Terms (RDT), this study shows how each of the resonance lines can be compensated independently. Furthermore, this study shows and discusses initial investigations into compensating multiple lines simultaneously.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST050  
About • Received ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST051 Study of Transverse Resonance Island Buckets at CESR lattice, resonance, simulation, damping 199
 
  • S. Wang, V. Khachatryan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by NSF PHYS-1416318 and DMR-1829070.
A 6-GeV lattice with the horizontal tune near a 3rd-order resonance line at 3νx=2 is designed for studying the transverse resonance island buckets (TRIBs) at the Cornell Electron Storage Ring (CESR). The distribution of 76 sextupoles powered individually is optimized to maximize the dynamic aperture and achieve the desired amplitude-dependent tune shift αxx and the resonant driving term h30000, which are necessary conditions to form stable island buckets. The particle tracking simulations are developed to check and confirm the formation of TRIBs at different tunes with clearing kicks in this TRIBs lattice. Finally, the lattice is loaded in CESR and the TRIBs are successfully observed when the horizontal fractional tune is adjusted to 0.665, close to the 3rd-order resonance line. Bunch-by-bunch feedback is also explored to clear the particles in the main bucket and the island buckets, respectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST051  
About • Received ※ 20 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST055 The EIC Rapid Cycling Synchrotron Dynamic Aperture Optimization dynamic-aperture, electron, lattice, resonance 210
 
  • H. Lovelace III, C. Montag, V.H. Ranjbar
    BNL, Upton, New York, USA
  • F. Lin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  With the design of the Electron-Ion Collider (EIC), a new Rapid Cycling Synchrotron (RCS) must be designed to accelerate the electron bunches from 400 MeV up to 18 GeV. An optimized dynamic aperture with preservation of polarization through the energy ramp was found. The codes DEPOL, MAD-X, and BMAD are used in modeling the dynamics and spin preservation. The results will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST055  
About • Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK006 Off-Energy Operation for the ESRF-EBS Storage Ring optics, SRF, injection, lattice 437
 
  • L. Hoummi, T. Brochard, N. Carmignani, L.R. Carver, J. Chavanne, S.M. Liuzzo, T.P. Perron, R. Versteegen, S.M. White
    ESRF, Grenoble, France
  • P. Raimondi
    SLAC, Menlo Park, California, USA
 
  The ESRF-EBS is the first 4th generation source making use of the Hybrid Multi-Bend Achromat (HMBA) lattice cell, reaching an equilibrium horizontal emittance of 140 pm.rad in user mode (insertion devices (ID) gaps open). The injection in the storage ring (SR) is conducted with a short booster, operated off-energy. The RF frequency is increased compared to the nominal one to put the beam on a dispersive orbit, thus going off-axis in quadrupoles. The induced dipolar feed down effects reduce the booster horizontal emittance. The same strategy is extended to the ESRF-EBS SR, for an expected emittance reduction of about 20 pm.rad. A first approach shifts the RF frequency by +300 Hz to operate at -1% energy offset. Optimal quadrupole and sextupole settings are defined for this off-energy operation based on simulations. The settings are then tested in the SR in terms of dynamic aperture and injection efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK006  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK009 Basic Design Choices for the BESSY III MBA Lattice emittance, lattice, dipole, ECR 449
 
  • B.C. Kuske, M. Abo-Bakr, P. Goslawski
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Lattice development efforts for the 2.5GeV, low emittance successor of BESSY II, are ongoing at HZB for 2 years. The basic choice of a multi-bend achromat lattice is indispensable due to the emittance goal of 100pm, required to generate diffraction limited radiation up to 1keV. Hard boundary conditions for the design are a reasonably short circumference of ~350m due to the accessible construction properties in vicinity to Bessy II and 16 super-periods to not step behind the number of existing experimental stations. Additionally, the Pysikalisch Technische Bundesanstalt, the long-term partner of HZB, requests homogeneous dipoles as a calculable and traceable source of radiation for metrology applications. The configuration of the two building blocks of MBA lattices - unit cell and dispersion suppression cell - has been thoroughly studied from basic principles. It was found that gradient free bending dipoles are the better choice for the BESSY III lattice, opposite to the concepts of comparable projects. This work summarizes and explains the findings of our investigations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK009  
About • Received ※ 21 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK026 Four-Dimensional Emittance Measurements and Correction of UED Optics up to Sextupole Order emittance, electron, quadrupole, solenoid 496
 
  • W.H. Li, M.B. Andorf, A.C. Bartnik, I.V. Bazarov, C.J.R. Duncan, M. Kaemingk, S.J. Levenson, J.M. Maxson, C.A. Pennington
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.A. Gordon, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
 
  Funding: U.S Department of Energy, grant DE-SC0020144 U.S. National Science Foundation Grant PHY-1549132, the Center for Bright Beams
Ultrafast electron diffraction imposes stringent constraints on the full 6D brightness of the probe electron beam. The desired normalized emittance, often in the few-nanometer regime and below, renders the beam very sensitive to field aberrations and space charge effects. In this proceeding, we report the correction of normal quadrupole, skew quadrupole, and sextupole aberrations in the MEDUSA ultrafast electron micro-diffraction beamline and measurements of the subsequent emittance. This low emittance is enabled by alkali-antimonide photocathodes driven at the photoemission threshold. We demonstrate that the measured emittance is consistent with that of optimized simulations with these cathodes, indicating that low emittance beams from high quality photocathodes can be preserved and used in practical applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK026  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK034 Energy Ramping Process for SPS-II Booster booster, synchrotron, emittance, quadrupole 527
 
  • S. Jummunt, S. Klinkhieo, P. Klysubun, T. Pulampong, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
 
  In order to provide synchrotron light with higher photon energy and more brilliant synchrotron light than that of the existing Siam Photon Source (SPS) machine, the possibility of constructing the new 3 GeV SPS-II has been proposed. For SPS-II, the synchrotron source with in-tunnel booster is a good candidate. The booster synchrotron has been designed in order to accelerate an electron beam of 150 MeV to 3 GeV before extracted to storage ring. For a clean injection in top-up operation, the aim in the design of the booster is to achieve the electron beam with a small emittance less than 10 nm-rad and to obtain a large dynamic aperture. The energy ramping process and related effects during the energy ramp are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK034  
About • Received ※ 12 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK039 Iron Yoke Effects in Quadrupole Magnets for High Rigidity Isotope Beams quadrupole, dipole, superconducting-magnet, simulation 546
 
  • D.B. Greene, Y. Choi, J. DeKamp, P.N. Ostroumov, M. Portillo, J.D. Wenstrom, T. Xu
    FRIB, East Lansing, Michigan, USA
  • S.L. Manikonda
    AML, Melbourne, Florida, USA
 
  Iron-dominated superconducting magnets are one of the most popular and most used design choices for superconducting magnetic quadrupoles for accelerator systems. While the iron yoke and pole tips are economic and effective in shaping the field, the large amount of iron also leads to certain drawbacks, namely, unwanted harmonics from the sextupole correctors nested inside of the quadrupole. Additional problems include the nonlinear field profile present in the high-field regime engendered by the presence of steel, and the mechanical and cryogenic design challenges of the entire iron yoke being part of the cold mass. The presented work discusses these effects and challenges by comparing an iron-dominated quadrupole model to an equivalent coil-dominated quadrupole model. The comparison of their respective magnetic harmonics, integrated strength, multipole effects, and mechanical challenges demonstrates that the coil-dominated design is a more favorable choice for select accelerator systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK039  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK040 Progress on the Measurement of Beam Size Using Sextupole Magnets quadrupole, factory, coupling, storage-ring 550
 
  • J.A. Crittenden, H.X. Duan, A.E. Fagan, G.H. Hoffstaetter, V. Khachatryan, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award number DMR-1829070.
Variations in strength of a sextupole magnet in a storage ring result in changes to the closed orbit, phase functions and tunes which depend on the position of the beam relative to the center of the sextupole and on the beam size. Such measurements have been carried out with 6 GeV positrons at the Cornell Electron Storage Ring. The initial analysis presented at IPAC21 has been extended to both transverse coordinates, introducing additional tune shifts and coupling kicks caused by skew quadrupole terms arising from the vertical position of the positron beam relative to the center of the sextupole. Variations of strength in each of the 76 sextupoles provide measurements of difference orbits, phase and coupling functions. An optimization procedure applied to these difference measurements determines the horizontal and vertical orbit kicks and the normal and skew quadrupole kicks corresponding to the the strength changes. Continuously monitored tune shifts during the sextupole strength scans provide a redundant, independent determination of the two quadrupole terms. Following the recognition that the calculated beam size is highly correlated with the calibration of the sextupole, a campaign was undertaken to obtain precise calibrations of the sextupoles and to measure their offsets relative to the reference orbit, which is defined by the quadrupole centers. We present the measured distributions of calibration correction factors and sextupole offsets together with the accuracy in their determination.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK040  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT059 Machine Learning Methods for Chromaticity Control at the 1.5 GeV Synchrotron Light Source DELTA storage-ring, synchrotron, controls, experiment 1141
 
  • D. Schirmer, A. Althaus, T. Schüngel
    DELTA, Dortmund, Germany
 
  In the past, the chromaticity values at the DELTA electron storage ring were manually adjusted using 15 individual sextupole power supply circuits, which are combined into 7 magnet families. To automate and optimize the time-consuming setting process, various machine learning (ML) approaches were investigated. For this purpose, simulations were first performed using a storage ring model and the performance of different neural network (NN) based models was compared. Subsequently, the neural networks were trained with experimental data and successfully implemented for chromaticity correction in real accelerator operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT059  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT064 Online Optimization of NSLS-II Dynamic Aperture and Injection Transient injection, kicker, timing, lattice 1159
 
  • X. Yang, B. Bacha, S. Buda, C. Danneil, A.A. Derbenev, D.J. Durfee, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo Jr, F. Plassard, T.V. Shaftan, V.V. Smaluk, Y. Tian, G.M. Wang, L.H. Yu
    BNL, Upton, New York, USA
 
  The goal of the NSLS-II online optimization project is to improve the beam quality for the user experiments. To increase the beam lifetime and injection efficiency, we have developed a model-independent online optimization of nonlinear beam dynamics using advanced algorithms, such as Robust Conjugate-Gradient Algorithm (RCDS). The optimization objective is the injection efficiency and optimization variables are the sextupole magnet strengths. Using the online optimization technique, we increased the NSLS-II dynamic aperture and reduced the amplitude-dependent tune shift. Recently, the sextupole optimization was successfully applied to double the injection efficiency up to above 90% for the high-chromaticity lattice being developed to improve the beam stability and to in-crease the single-bunch beam intensity. Minimizing the beam perturbation during injection is the second objective in this project, realized by online optimization of the injection kickers. To optimize the full set of kicker parameters, including the trigger timing, amplitude, and pulse width, we upgraded all kicker power supplies with the capability of tunable waveform width. As a result, we have reduced the injection transient by a factor of 29, down to the limit of 60 um.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT064  
About • Received ※ 18 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS008 Lifetime Correction Using Fast-Off-Energy Response Matrix Measurements simulation, optics, lattice, operation 1409
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, T.P. Perron, B. Roche, S.M. White
    ESRF, Grenoble, France
 
  Following the measurements done at MAX-IV * we try to exploit for the ESRF-EBS Storage Ring (SR) off-energy response matrix measurement for the optimization of Touschek lifetime. The measurements performed with fast AC steerers on- and off-energy are analyzed and fitted producing an effective model including quadrupole and sextupole errors. Several alternatives to extrapolate sextupoles strengths for correction are compared in terms of lifetime. For the time being none of the corrections could produce better lifetime than the existing empirically optimized set of sextupoles.
*D.Olsson et al., Nonlinear optics from off-energy closed orbits, 10.1103/PhysRevAccelBeams.23.102803
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS008  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS010 BESSY III Status Report and Lattice Design Process lattice, emittance, HOM, radiation 1417
 
  • P. Goslawski, M. Abo-Bakr, M. Arlandoo, J. Bengtsson, K. Holldack, A. Jankowiak, B.C. Kuske, A. Meseck, M.K. Sauerborn, M. Titze, J. Viefhaus, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Since 2020 a detailed discussion about a BESSY~II successor is ongoing at HZB and its user community in order to define the science and layout of the new facility. Still free locations close to BESSY~II have triggered a discussion about a greenfield project, but in-house upgrade solutions have also been investigated. As an additional boundary condition, BESSY~III has to meet the requirement of the Physikalische Technische Bundesanstalt (PTB) for radiation sources for metrology applications and bending magnet sources for tender X-rays. A Conceptional Design Report is in preparation. Here, we give a status report including a first parameter space, technical specifications and a first candidate for the linear lattice.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD3 Isochronous Mode of the Experimental Storage Ring (ESR) at GSI experiment, electron, detector, dipole 1620
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The isochronous optics of the ESR is a unique ion-optical setting in which the particles within a finite momentum acceptance circulate at constant frequency. It is used for direct mass measurements of short-lived exotic nuclei by a Time-of-Flight method. Besides the mass spectrometry, the isochronous ESR has been used as an instrument for the search of short lived isomers stored in the ring, which was performed in 2021 for the first time. Introduction to the isochronous mode of the ESR, comparison with a standard operational mode, recent machine experiments will be presented here. Possible improvements of the isochronous optics at the ESR and perspectives of the isochronous mode at CR, FAIR will be outlined.  
slides icon Slides WEOYGD3 [6.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOYGD3  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT005 Investigation of Polarized Proton Spin Coherence Time at Storage Rings proton, experiment, storage-ring, betatron 1832
 
  • A.A. Melnikov, A.E. Aksentyev, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • E. Syresin
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  Funding: We appreciate a support of this study by the Russian Science Foundation grant 22-42-04419 and the ERC Advanced Grant of the European Union (proposal number 694340).
The idea of the Electric Dipole Moment (EDM) search using the storage ring with polarized beam demands long Spin Coherence Time (SCT). It is the time during which the RMS spread of the orientation of spins of all particles in the bunch reaches one radian. Long SCT is needed to observe a coherent effect on polarization induced by the EDM. The possibility of getting a 1000 s SCT for deuterons has been shown experimentally at COoler SYnchrotron (COSY), accelerator at FZJ Jülich, Germany. Reaching high values of SCT for protons is more challenging due to a higher anomalous magnetic moment. Obtaining sufficient proton SCT is obligatory for planned EDM search experiments at COSY and the ProtoType EDM Ring (PTR). It has been shown that the second order momentum compaction factor (alpha1) has to be optimized along with chromaticities to get high SCT. Three families of sextupoles have to be used. The optimal values of chromaticities and alpha1 are discussed. The racetrack option of PTR is investigated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT005  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT009 Operational Scenario of First High Luminosity LHC Run luminosity, operation, emittance, injection 1846
 
  • R. Tomás García, G. Arduini, P. Baudrenghien, R. Bruce, O.S. Brüning, X. Buffat, R. Calaga, F. Cerutti, R. De Maria, J. Dilly, I. Efthymiopoulos, M. Giovannozzi, P.D. Hermes, G. Iadarola, O.R. Jones, S. Kostoglou, E.H. Maclean, N. Mounet, E. Métral, Y. Papaphilippou, S. Redaelli, G. Sterbini, H. Timko, F.F. Van der Veken, J. Wenninger, M. Zerlauth
    CERN, Meyrin, Switzerland
 
  A new scenario for the first operational run of the HL-LHC era (Run 4) has been recently developed to accommodate a period of performance ramp-up to achieve an annual integrated luminosity close to the nominal HL-LHC design. The operational scenario in terms of beam parameters and machine settings, as well as the different phases, are described here along with the impact of potential delays on key hardware components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT009  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT043 Dynamic Aperture of the EIC Electron Storage Ring lattice, optics, quadrupole, electron 1950
 
  • Y.M. Nosochkov, Y. Cai
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, H. Witte
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515, by Brookhaven Science Associates, LLC under Contract DE-SC0012704, and by the Ernest Courant Traineeship in Accelerator Science and Technology Award No. DE-SC0020375.
The Electron Ion Collider (EIC) is under design at Brookhaven National Laboratory. The EIC aims at providing high luminosity and high polarization collisions for a large range of beam energies. Dynamic aperture (DA) of the EIC Electron Storage Ring (ESR) must be sufficiently large in both transverse and momentum dimensions. The latter is a challenge due to low-beta optics in up to two interaction regions (IR). We have developed an advanced technique for efficient non-linear chromaticity compensation compatible with the different ESR lattice configurations at different energies. The solution for the most challenging lattice with two IRs at 18 GeV is presented. The lattice is then evaluated with magnet errors, where the error tolerances are determined for reaching the desired DA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT043  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT058 A Response Matrix Approach to Skew-Sextupole Correction in the LHC at Injection coupling, simulation, injection, resonance 1987
 
  • E. Waagaard
    Uppsala University, Uppsala, Sweden
  • E.H. Maclean
    CERN, Meyrin, Switzerland
 
  To date, no dedicated attempt has been made to correct skew-sextupole resonances in the LHC at injection. Recently this topic has gained interest however, following the investigation for the emittance growth generation during the LHC energy ramp, due to third order islands. The LHC is equipped with skew-sextupole correctors in the experimental insertions (MCSSX), intended for local compensation at top energy, and with several families of skew sextupole magnets in the arcs (MSS), which are intended for chromatic coupling compensation at top energy but are not optimally placed for resonance compensation. Simulation studies were performed in MAD-X and PTC to assess whether the MSS and MCSSX correctors could be used to compensate skew-sextupole RDTs in the LHC at injection via a response matrix approach, based on measured values at the LHC BPMs. It was found that compensation was viable, but at the cost of significantly increased corrector strength compared to chromatic coupling compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK022 Horizontal Beam Response at Extraction Conditions at the Heidelberg Ion-Beam Therapy Centre extraction, simulation, resonance, pick-up 2096
 
  • E.C. Cortés García, E. Feldmeier, Th. Haberer
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion-Beam Therapy Centre’s synchrotron makes use of the sextupole driven RF-KO method near the third-order resonance in order to slowly extract the beam that is delivered to the patients. The horizontal beam response of a coasting beam was studied experimentally and with simulations at extraction conditions in order to deduce regions of interest for an optimal excitation signal spectrum. Two narrow frequency regions were found were the beam reacts coherently. With these information an RF signal was proposed for the resonant slow extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK022  
About • Received ※ 17 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS052 Impacts of an ATS Lattice on EIC Dynamic Aperture lattice, electron, optics, collider 2373
 
  • J.E. Unger, J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Marx
    BNL, Upton, New York, USA
 
  The Electron-Ion Collider (EIC) project at Brookhaven National Laboratory has explored strategies for increasing the energy aperture of the Electron Storage Ring (ESR) to meet the goal of 1\% for the 90 degree lattice at 18 GeV. Current strategies use a four sextupole family per arc correction scheme to increase the energy aperture and to keep the transverse aperture sufficiently large as well. A scheme called Achromatic Telescopic Squeezing (ATS), first introduced for the Large Hadron Collider, introduces a beta-beat into select arcs, allowing dynamic aperture optimizations with different sextupole strengths. The ATS scheme’s mix of some higher beta-function and some lower sextupole strengths in the arcs has the potential to increase the energy aperture. Basic chromatic corrections and numeric optimizations were used to compare the ATS optics to a non-ATS scheme. In all cases, the ATS scheme performed similarly or better than the more common schemes. However, this increase in energy aperture from the ATS optics also has negative effects, such as an increase in emittance which poses complications for the current ESR design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS052  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT001 Online Optimization of the ESRF-EBS Storage Ring Lifetime octupole, SRF, lattice, simulation 2552
 
  • N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  In the first year of operation of the EBS storage ring, online nonlinear dynamics optimisations were performed to increase the Touschek lifetime. Several sextupole, octupole and skew quadrupole knobs have been studied in simulations and tested in the machine. A fast optimisation procedure has been defined and it is followed at each machine restart. The knobs and the optimisation procedure are described in the paper. As a result, up to 41 h Touschek lifetime in nominal multi-bunch mode have been achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT001  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT003 A First attempt at implementing TRIBs in BESSY III’s Design Lattice lattice, resonance, quadrupole, photon 2560
 
  • M. Arlandoo, P. Goslawski, M. Titze
    HZB, Berlin, Germany
 
  At HZB’s BESSY II and PTB’s Metrology Light Source (MLS), resonances and islands in transverse phase space are exploited in a special operation mode usually referred to as Transverse Resonance Island Buckets (TRIBs). This mode provides a second stable orbit well separated from the main orbit and one of its applications in photon science is the ultra-fast switching of the helicity of circularly polarized light pulses. In the context of the conceptual design study of BESSY III, it is under investigation how this special optics mode can be implemented in an MBA structure and how it will impact the photon source parameters. In this paper we present a preliminary attempt at implementing TRIBs in BESSY III’s design lattice, a multi-bend achromat, by breaking the symmetry of the lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT006 Beam Dynamics Observations at Negative Momentum Compaction Factors at KARA damping, synchrotron, optics, operation 2570
 
  • P. Schreiber, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: We are supported by the DFG-funded "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" and European Union’s Horizon 2020 research and innovation programme (No 730871)
For the development of future synchrotron light sources new operation modes often have to be considered. One such mode is the operation with a negative momentum compaction factor to provide the possibility of increased dynamic aperture. For successful application in future light sources, the influence of this mode has to be investigated. At the KIT storage ring KARA (Karlsruhe Research Accelerator), operation with negative momentum compaction has been implemented and the dynamics can now be investigated. Using a variety of high-performance beam diagnostics devices it is possible to observe the beam dynamics under negative momentum compaction conditions. This contribution presents different aspects of the results of these investigations in the longitudinal and transversal plane.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT006  
About • Received ※ 08 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT010 Beam Loss Reduction During Energy Ramp-Up at the SAGA-LS power-supply, storage-ring, acceleration, quadrupole 2583
 
  • Y. Iwasaki
    SAGA, Tosu, Japan
 
  The accelerator of the SAGA Light Source (SAGA-LS) consists of a 255 MeV injector linac and a 1.4 GeV storage ring. The energy of the electrons is ramped up to 1.4 GeV in 4 minutes in the storage ring. The electron beam current stored in the storage ring is about 300 mA. At the begging of the energy ramp-up, the electron beam was lost like step function. The lost beam current was normally about 5 mA to 30 mA. To understand the beam loss mechanism, we developed simultaneous image logging system of beam profile in addition to the beam current, the magnets power supplies, and the beam positions using National Instruments PXI. It was found that the vertical beam size was growing in the step-like beam loss process. The small perturbation of the output currents of the quadrupole power supplies caused the vertical beam size growth. By optimizing the ramp-up pattern of the quadrupole power supplies, sextupole power supplies, and the steering power supplies for the orbit control, we have achieved the reduction of the step-like beam loss and total time of the ramp-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT023 Flexible Features of the Compact Storage Ring in the cSTART Project at Karlsruhe Institute of Technology electron, storage-ring, lattice, scattering 2620
 
  • A.I. Papash, A. Bernhard, E. Bründermann, D. El Khechen, B. Härer, A.-S. Müller, R. Ruprecht, J. Schäfer, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Within the cSTART project (compact storage ring for accelerator research and technology), a Very Large Acceptance compact Storage Ring (VLA-cSR) will be realized at the Institute for Beam Physics and Technology (IBPT) of the Karlsruhe Institute of Technology. (KIT). A modified geometry of a compact storage ring operating at 50 MeV energy range has been studied and main features of the new model are described here. The new design, based on 45° bending magnets, is suitable to store a wide momentum spread beam as well as ultra-short electron bunches in the sub-ps range injected from the plasma cell as well as from the Ferninfrarot Linac- Und Test Experiment (FLUTE). The DBA lattice of the VLA-cSR with different settings and relaxed parameters, split elements and higher order optics of tolerable strength allows to improve the dynamic aperture and momentum acceptance to an acceptable level. This contribution discusses the lattice features in detail, expected lifetime, injection, tolerances and different possible operation schemes of the ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT023  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT064 Hall Probe Magnetic Measurement of 50 mm Period PPM Undulator undulator, multipole, quadrupole, controls 2744
 
  • S.M. Khan, G. Mishra
    Devi Ahilya University, Indore, India
  • M. Gehlot
    MAX IV Laboratory, Lund University, Lund, Sweden
  • H. Jeevakhan
    NITTTR, Bhopal, India
 
  In this paper, we present the latest upgradation of Hall Probe magnetic measurement system. The Hall Probe measurement system is upgraded with position measuring detectors and 3D F.W. Bell Teslameter. The field integrals and the phase errors are calculated with a new user friendly MATLAB code. The integrated multipoles both normal and skew components are measured and discussed in the paper. The proposed activities on 300 mm length prototype asymmetric undulator and 50 mm quasi period, six period length at Laser Instrumentation and Insertion Device Application laboratory of Devi Ahilya Vishwa Vidyalaya (DAVV), Indore, India has been discussed and design components are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT064  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK002 Magnet Design for the PETRA IV Storage Ring quadrupole, dipole, storage-ring, octupole 2767
 
  • R. Bartolini, I.V. Agapov, A. Aloev, H.-J. Eckoldt, D. Einfeld, B. Krause, A. Petrov, M. Thede, M. Tischer
    DESY, Hamburg, Germany
  • J. Chavanne
    ESRF, Grenoble, France
 
  The proposed PETRA IV electron storage ring that will replace DESY’s flagship synchrotron light source PETRA III will feature a horizontal emittance as low as 20 pmrad. It is based on a hybrid six-bend achromat lattice. In addition to the storage ring PETRA IV, the Booster Synchrotron and the corresponding transfer line will be renewed. Overall about 4000 magnets will be manufactured. The lattice design require high-gradient quadrupoles, which are unfeasible with conventional steel, used traditionally for normal-conducting magnets. The required gradient is safely reached with the poles, made of Permendur. The bending magnets for the storage ring will be based on permanent magnets. This contribution presents the electromagnetic design of the magnets for the storage ring and booster synchrotron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK002  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK007 Magnet Systems for Korea 4GSR Light Source quadrupole, dipole, emittance, multipole 2781
 
  • D.E. Kim, T. Ha, G. Hahn, Y.G. Jung, H.-G. Lee, J. Lee, S. Shin, H.S. Suh
    PAL, Pohang, Republic of Korea
 
  Funding: Work supported by NRF of the Republic of Korea.
A 4th generation storage ring based light source is being developed in Korea since 2021. It features < 100 pm rad emittance, about 800 m circumference, 4 GeV e-beam energy, full energy booster injection, and more than 40 beamlines which includes more than 24 insertion device (ID) beamlines. This machine requires about ~1000 magnets including dipole, longitudinal gradient dipole, transverse gradient dipole, sextupoles, and correctors. The apertures are small and the lattice space requirements are very tight. In this report, a preliminary design of the each magnet is presented with detailed plan for the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK007  
About • Received ※ 13 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK013 Cold Test Results of the FAIR Super-FRS First-of-Series Multiplets and Dipole quadrupole, dipole, cryogenics, octupole 2796
 
  • A. Chiuchiolo, A. Beaumont, E.J. Cho, F. Greiner, P. Kosek, M. Michels, H. Müller, C. Roux, H. Simon, K. Sugita, V. Velonas, F. Wamers, M. Winkler, Y. Xiang
    GSI, Darmstadt, Germany
  • H. Allain, V. Kleymenov, A. Madur
    CEA-IRFU, Gif-sur-Yvette, France
 
  Within the collaboration between GSI and CERN, a dedicated cryogenic test facility has been built at CERN (Geneva, Switzerland) in order to perform the site acceptance tests of the 56 Superconducting FRagment Separator cryomodules before their installation at the the Facility for Antiproton and Ion Research (Darmstadt, Germany). Two of the three benches of the CERN test facility were successfully commissioned with the powering tests of the first-of-series multiplets and dipole. The long multiplet, with a warm bore radius of 192 mm, is composed of nine magnets of different type (quadrupole, sextupole, steering dipole and octupole) assembled with Nb-Ti racetrack and cosine-theta coils, mounted in a cold iron yoke and in a common cryostat. This work presents the first results of the cold powering tests at 4.5 K during which dedicated measurements have been implemented for the magnetic characterization of the single magnets up to nominal current (300 A for a long quadrupole) and the study of their crosstalk effects. The results of the acceptance tests will be presented together with the challenges and lessons learnt during the facility commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK013  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)