Keyword: cryogenics
Paper Title Other Keywords Page
TUOXSP1 Origin and Mitigation of the Beam-Induced Surface Modifications of the LHC Beam Screens electron, radiation, ECR, MMI 780
 
  • V. Petit, P. Chiggiato, M. Himmerlich, S. Marinoni, H. Neupert, M. Taborelli, L.J. Tavian
    CERN, Meyrin, Switzerland
 
  All over Run 2, the LHC beam-induced heat load on the cryogenic system exhibited a wide scattering along the ring. Studies ascribed the heat source to electron cloud build-up, indicating an unexpected high Secondary Electron Yield (SEY) of the beam screen surface in some LHC regions. The inner copper surface of high and low heat load beam screens, extracted during the Long Shutdown 2, was analysed. On the low heat load ones, the surface was covered with the native Cu2O oxide, while on the high heat load ones CuO dominated at surface, and it exhibited a very low carbon coverage. Such chemical modifications increase the SEY and inhibit a proper conditioning of the affected surfaces. Following this characterisation, the mechanisms for CuO build-up in the LHC beam pipe were investigated on a newly commissioned cryogenic system allowing electron irradiation, surface chemical characterisation by X-ray Photoelectron Spectroscopy and SEY measurements on samples held below 15 K. In parallel, curative solutions against the presence of CuO in the LHC beam screens were explored, which could be implemented in-situ to recover a proper conditioning and lower the beam-induced heat load.  
slides icon Slides TUOXSP1 [2.669 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOXSP1  
About • Received ※ 17 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST014 Sirius Storage Ring RF System Status Update cavity, LLRF, operation, storage-ring 872
 
  • A.P.B. Lima, D. Daminelli, M. Hoffmann Wallner, F.K.G. Hoshino
    LNLS, Campinas, Brazil
  • I. Carvalho de Almeida, R.H.A. Farias
    CNPEM, Campinas, SP, Brazil
 
  Sirius’s nominal operation phase consists of two 500 MHz CESR-B type superconducting cavities, each being driven by four 65 kW solid-state amplifiers, and a passive superconducting third harmonic cavity. Currently a normal conducting 7-cell PETRA cavity is being used along with two 65 kW RF amplifiers and was recently able to achieve 100 mA stored current. The performance of the storage ring RF system and the updated installation plans update are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST014  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK002 Results of the RF Power Tests of the ESS Cryomodules Tested at CEA cryomodule, cavity, electron, detector 1186
 
  • O. Piquet, S. Berry, A. Bouygues, E. Cenni, G. Devanz, C. Madec, C. Mayri, P. Sahuquet
    CEA-DRF-IRFU, France
  • C. Arcambal, Q. Bertrand, P. Bosland, T. Hamelin
    CEA-IRFU, Gif-sur-Yvette, France
  • M.J. Ellis
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • P. Pierini
    ESS, Lund, Sweden
  • D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  Eight of the medium and high beta cryomodules deliv-ered to ESS by CEA are tested at CEA before delivery; the two medium and high beta prototypes and the three first of each type of the series. The goal of these tests is to validate the assembly and the performances on few cryomodules before the next cryomodules of the series are delivered to ESS. This paper summarizes the general results obtained during the tests at 2 K and at high RF power, Pmax = 1.1 MW. The cavities reach the ESS re-quirements, Eacc = 16.7 MV/m (Medium beta) and 19.9 MV/m (High beta) with an efficient compensation of the Lorentz detuning by the piezo tuner over the full RF pulse length of 3.6 ms at 14 Hz. After the successful tests at CEA, the first cryomodules have been shipped to ESS where the final acceptance test are performed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK002  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIYSP1 New Designs of Short-Period Undulators for Producing High-Brightness Radiation in Synchrotron Light Sources undulator, vacuum, radiation, synchrotron 1624
 
  • E.J. Wallén
    LBNL, Berkeley, California, USA
 
  We review modern state-of-the-art and new concepts of undulators planned for new generation light sources. Both superconducting and permanent-magnet-based insertion devices feature unique solutions to reach high precisely tunable fields in the period range of 10-18 mm, 2-4 meters in length and with the ID gaps of less than 5 mm. The same quest for small gaps and shortest possible period length exists also for elliptically polarizing undulators. A review of new designs in Europe, Asia and Americas will be in the focus of this presentation.  
slides icon Slides WEIYSP1 [21.171 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYSP1  
About • Received ※ 15 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST027 Fabrication of Robust Thermal Transition Modules and First Cryogenic Experiment with the Refurbished COLDDIAG vacuum, operation, diagnostics, experiment 2505
 
  • H.J. Cha, N. Glamann, A.W. Grau, A.-S. Müller, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
Two sets of thermal transition modules as a key component for the COLDDIAG (cold vacuum chamber for beam heat load diagnostics) refurbishment were manufactured, based on the previous design study. The modules are installed in the existing COLDDIAG cryostat and tested with an operating temperature of approximately 50 K at both a cold bore and a thermal shield. This cool-down experiment is a preliminary investigation aiming at beam heat-load studies at the FCC-hh where the beam screens will be operated at almost the same temperature. In this contribution, we report the fabrication processes of the mechanically robust transition modules and the first thermal measurement results with the refurbished COLDDIAG in a cryogenic environment. The static heat load in the refurbished cryostat remains unchanged, compared to that in the former one (4-K cold bore and 50-K shield with thin transitions), despite the increase in the transition thickness. It originates from the identical temperature at the cold bore and the shield, which can theoretically allow the heat intakes by thermal conduction and radiation between them to vanish.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST027  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST045 Temperature Dependent Effects on RF Surface Resistivity cavity, electron, experiment, operation 2540
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOE Contract DE-SC0020409
A promising future for linear accelerators such as compact free electron lasers and electron positron colliders is higher gradient RF cavities enabled by cryogenic temperature operation. Breakdown rates have been shown empirically to be significantly reduced at low temperatures allowing for higher gradient. The surface physics associated with this observation is complicated and there many remain questions as to the exact phenomena responsible. One major figure of merit that can better inform the theory of breakdown is the RF surface resistivity which can be used to compute for example the RF pulse heating during operation. We then use techniques developed for previous Xband and Sband low power surface resistivity measurement by way of temperature dependent quality factor measurements to study Cband cavities. We first present a review of low temperature effects that may be responsible for the change in surface resistivity at low temperature. We then explain some of the initial measurements of these low power RF quality factor tests and compare them to a review some of the physical phenomena that could determine the low temperature surface effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST045  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST046 CrYogenic Brightness-Optimized Radiofrequency Gun (CYBORG) cathode, cavity, gun, brightness 2544
 
  • G.E. Lawler, A. Fukasawa, N. Majernik, J.R. Parsons, J.B. Rosenzweig, Y. Sakai, A. Suraj
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE Contract DE-SC0020409
Producing higher brightness beams at the cathode is one of the main focuses for future electron beam applications. For photocathodes operating close to their emission threshold, the cathode lattice temperature begins to dominate the minimum achievable intrinsic emittance. At UCLA, we are designing a radiofrequency (RF) test bed for measuring the temperature dependence of the mean transverse energy (MTE) and quantum efficiency for a number of candidate cathode materials. We intend to quantify the attainable brightness improvements at the cathode from cryogenic operation and establish a proof-of-principle cryogenic RF gun for future studies of a 1.6-cell cryogenic photoinjector for the UCLA ultra compact XFEL concept (UC-XFEL). The test bed will use a C-band 0.5-cell RF gun designed to operate down to 45 K, producing an on-axis accelerating field of 120 MV/m. The cryogenic system uses conduction cooling and a load-lock system is being designed for transport and storage of air-sensitive high brightness cathodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST046  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT002 Beam Power Deposition on the Cryogenic Permanent Magnet Undulator simulation, SRF, undulator, impedance 2556
 
  • L.R. Carver, C. Benabderrahmane, P. Brumund, N. Carmignani, J. Chavanne, G. Le Bec, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  X-rays with high brilliance and low phase errors are generated in the Cryogenic Permanent Magnet Undulator (CPMU) currently in use at the ESRF. In the event of a failure of the cryogenic cooling the beam will continue to deposit power into the module, even when the undulator jaws are fully opened. This could lead to unacceptably high heating of the magnet blocks which could cause their demagnetisation. Impedance simulations were performed using IW2D and CST to compute the power deposited by the beam in both the closed and open jaw settings. This was followed by thermal simulations to compute the expected temperature rise. These results will help advise the operational procedure in the event of a cooling failure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT002  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT033 Performance Characterisation at Daresbury Laboratory of Cs-Te Photocathodes Grown at CERN cathode, electron, emittance, vacuum 2653
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Benjamin, H.M. Churn, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • E. Chevallay, V.N. Fedosseev, E. Granados, M. Himmerlich, H. Panuganti
    CERN, Meyrin, Switzerland
  • L.B. Jones, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high-performance photocathodes is a priority in the field of particle accelerators. The surface characteristics of a photocathode affect many important factors of the photoemission process including the photoemission threshold, the intrinsic emittance and the quantum efficiency. These factors in turn define the electron beam quality, which is measurable using figures of merit like beam emittance, brightness and energy spread. We present characterisation measurements for four caesium telluride photocathodes synthesized at CERN. The photocathodes were transported under ultra-high vacuum (UHV) and analysed at STFC Daresbury Laboratory, using ASTeC’s Multiprobe (SAPI)* for surface characterisation via XPS and STM, and for Mean Transverse Energy (MTE) measurements using the Transverse Energy Spread Spectrometer (TESS)**. The MTE measurements were estimated at cryogenic and room temperatures based on the respective transverse energy distribution curves. We discuss correlations found between the synthesis parameters, and the measured surface characteristics and MTE values.
*B.L. Militsyn, 4-th EuCARD2 WP12.5 meeting, Warsaw, 14-15 March 2017
**L.B. Jones et al., Proc. FEL ’13, TUPPS033, 290-293; https://accelconf.web.cern.ch/FEL2013/papers/tupso33.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT033  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT050 Development and Construction of Cryogenic Permanent Magnet Undulators for ESRF-EBS undulator, SRF, permanent-magnet, vacuum 2712
 
  • C. Benabderrahmane, P. Brumund, J. Chavanne, D. Coulon, G. Le Bec, B. Ogier, R. Versteegen
    ESRF, Grenoble, France
 
  The ESRF Extremely Brilliant Source (ESRF-EBS) is on operation for Users since August 2020 after 20 months of shutdown. This first of a kind fourth generation high energy synchrotron is based on a Hybrid Multi-Bend Achromat lattice. The main goal of the ESRF-EBS is to reduce the horizontal emittance, which leads to a signifi-cant increase of the X-ray source brilliance. To cover the intensive demand of short period small gap undulators at ESRF-EBS, a new design for a 2 m Cryogenic Permanent Magnet Undulator (CPMU) has been developed. Six CPMUs will be installed in the next years; the first two CPMUs have been constructed and actually used on ID15 and ID16 beamline, the third one is under con-structing. An intensive refurbishment work has been done on the existing insertion devices to adapt them to the new accelerator which has shorter straight section and closer dipoles to the IDs than in the old one. This contribution will review the development, construc-tion and commissioning of the new CPMUs, and the refurbishment work done on the existing ones to adapt them to the new accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT050  
About • Received ※ 02 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK013 Cold Test Results of the FAIR Super-FRS First-of-Series Multiplets and Dipole quadrupole, dipole, sextupole, octupole 2796
 
  • A. Chiuchiolo, A. Beaumont, E.J. Cho, F. Greiner, P. Kosek, M. Michels, H. Müller, C. Roux, H. Simon, K. Sugita, V. Velonas, F. Wamers, M. Winkler, Y. Xiang
    GSI, Darmstadt, Germany
  • H. Allain, V. Kleymenov, A. Madur
    CEA-IRFU, Gif-sur-Yvette, France
 
  Within the collaboration between GSI and CERN, a dedicated cryogenic test facility has been built at CERN (Geneva, Switzerland) in order to perform the site acceptance tests of the 56 Superconducting FRagment Separator cryomodules before their installation at the the Facility for Antiproton and Ion Research (Darmstadt, Germany). Two of the three benches of the CERN test facility were successfully commissioned with the powering tests of the first-of-series multiplets and dipole. The long multiplet, with a warm bore radius of 192 mm, is composed of nine magnets of different type (quadrupole, sextupole, steering dipole and octupole) assembled with Nb-Ti racetrack and cosine-theta coils, mounted in a cold iron yoke and in a common cryostat. This work presents the first results of the cold powering tests at 4.5 K during which dedicated measurements have been implemented for the magnetic characterization of the single magnets up to nominal current (300 A for a long quadrupole) and the study of their crosstalk effects. The results of the acceptance tests will be presented together with the challenges and lessons learnt during the facility commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK013  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK022 Cryogenic Infrastructure for the Mainz Energy-Recovering Superconducting Accelerator (MESA) experiment, target, cryomodule, SRF 2813
 
  • T. Stengler, K. Aulenbacher, F. Hug, P.S. Plattner, D. Simon
    KPH, Mainz, Germany
 
  Funding: Work supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA+" EXC 2118/2019
The "Mainz Energy-Recovering Superconducting Accelerator" (MESA), currently under construction at the Institute of Nuclear Physics, Johannes Gutenberg University Mainz, Germany, requires a cryogenic infrastructure for its superconducting components. Prior to the start of the project, a helium liquefier was purchased that is capable of supplying the existing infrastructure of the Institute for Nuclear Physics, as well as the SRF test facility of the Helmholtz Institute. The liquefier has already been purchased in such a way that nitrogen pre-cooling can be integrated and can be upgraded for the operation of MESA. In addition to the superconducting accelerator modules, all components of the P2 experiment, i.e. solenoid, target and polarimeter (hydromoller), must also be supplied with liquid helium. Therefore, besides the upgrade of the liquefier, it is necessary to extend the system with a dedicated cryogenic supply for the P2 target. This paper presents the current status of the cryogenic supply of the MESA accelerator, the future modifications and additions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK022  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK025 Heat Loads Measurement Methods for the ESS Elliptical Cryomodules SAT at Lund Test Stand cavity, cryomodule, SRF, ECR 2819
 
  • N. Elias, X.T. Su
    ESS, Lund, Sweden
  • W. Gaj, P. Halczynski, M. Sienkiewicz, F.D. Skalka
    IFJ-PAN, Kraków, Poland
 
  The Site Acceptance Testing of all ESS elliptical cryomodules is done at Lund Test Stand. The cryogenic heat loads (static and dynamic) are an essential part of the acceptance criteria. We present complementary measurement methods for evaluating the cryogenic heat loads and discuss a qualitative comparison between them. We also present a summary of the results of these methods for one of the cryomodules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK025  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK027 Temperature Dependent Effects on Quality Factor in C-band RF Cavities cavity, vacuum, shielding, electron 2826
 
  • J.R. Parsons, A. Fukasawa, G.E. Lawler, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOE Contract DE-SC0020409
Cryogenic operation and associated skin effects are encouraging fields of study for increasing RF gradients of beams within cavities and decreasing the required size for linear accelerators such as free electron lasers. Notably, a cavity’s RF quality factor Q, the ratio of the outgoing RF signal power to the input power, is theoretically multiplied by over 4 when subjected to cryogenic temperatures. Precise measurements of this Q factor require defining a cryostat unit, which consists of a high vacuum chamber, a coldhead, and MLI shielding. We optimized the cryostat by running several cool down tests at high vacuum, incorporating different geometries of MLI shielding to achieve the lowest possible temperatures. We then performed a low power C-band test after installing a cylindrical copper RF cavity to measure the Q factor. Finally, we improved stability and amplification within the chamber by installing edge welded bellows to the coldhead to reduce vibrations. These measurements provide a basis for the development of cryogenic infrastructure to sustain a cryogenic temperature environment for future RF applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK027  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK035 Thermo-Mechanical Modeling and Thermal Performance Analysis of Beam Vacuum Line Interconnections and Cold Warm Transitions in HL-LHC Long Straight Section Magnets luminosity, radiation, vacuum, insertion 2839
 
  • J. Harray, C. Garion, V. Petit
    CERN, Meyrin, Switzerland
 
  The HL-LHC upgrade, aiming at increasing the LHC levelled luminosity by factor of five, relies on new superconducting magnets requiring a new beam vacuum system. Along with the challenges related to magnet design, the beam optic configuration exposes this new equipment to stringent conditions for vacuum and cryogenic performance. Both cold-warm transitions and magnet interconnections appear to be delicate components that are crucial for the thermal heat transfer between diverse subsystems. The proposed study aims at assessing the heat loads to the cryogenic system and the temperature fields in the vacuum system. A nonlinear static thermal analysis is first performed. A thermo-mechanical approach is developed to capture additional thermal resistance arising from contact between components and their behaviour during cool-down. The system is then studied under dynamic operations when beams are circulating and colliding. A thorough analysis of beam-induced heat loads under ultimate conditions highlights the different relevant contributions. Finally, the transient response of the systems is computed to assess thermal time constants.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK035  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS052 Magnetic Field Shield for SC-Cavity with Thin Nb Sheet cavity, niobium, shielding, experiment 3090
 
  • Y. Iwashita, Y. Kuriyama
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Funding: This work was partly supported by JSPS KAKENHI Grant Number 19K21877.
Shielding the superconducting accelerating cavity made of niobium from the weak environmental magnetic field is an important subject. Niobium is a type-II superconductor, which traps the environmental magnetic flux in the material during the superconducting transition, resulting in increase of residual resistance and heating during operation during operation. Shielding from a weak magnetic field is essential for high performance operations. A magnetic shielding method that uses the diamagnetism of superconducting materials instead of magnetic flux absorption by high magnetic permeability materials is discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS052  
About • Received ※ 14 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRPLYGD1 Towards Efficient Particle Accelerators - A Review collider, cavity, radiation, luminosity 3141
 
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Sustainability has become an important aspect of all human activities, and also for accelerator driven research infrastructures. For new facilities it is mandatory to optimize power consumption and overall sustainability. This presentation will give an overview of the power efficiency of accelerator concepts and relevant technologies. Conceptual aspects will be discussed for proton driver accelerators, light sources and particle colliders. Several accelerator technologies are particularly relevant for power efficiency. These are utilized across the various facility concepts and include superconducting RF and cryogenic systems, RF sources, energy efficient magnets, conventional cooling and heat recovery. Power efficiency has been a topic in the European programs EUCARD-2, ARIES and the ongoing I.FAST project and the documentation of these programs is a related source of information.  
slides icon Slides FRPLYGD1 [4.531 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FRPLYGD1  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)