Keyword: booster
Paper Title Other Keywords Page
MOPOST008 Simulations of Protons to Extraction at Gγ=7.5 in the AGS Booster resonance, proton, dipole, polarization 62
 
  • K. Hock, H. Huang, F. Méot
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To prepare for polarized helion collisions at the Electron Ion Collider (EIC), polarization transmission at the injectors for the Hadron Storage Ring must be studied and optimized. To this effect, an AC dipole has been installed in the AGS Booster to maximize polarization transmission of helions through several intrinsic resonances. This installation also allows polarized protons to be extracted at higher energy without polarization loss. By increasing the proton extraction energy from $Gγ$ = 4.5 to $Gγ$ = 7.5, protons will cross the $Gγ$ = 0 + νy$ and $Gγ = 12 - νy$ depolarizing vertical intrinsic resonances, the $Gγ$ = 5, 6, and 7 imperfection resonances in addition to the $Gγ$ = 3, 4 that are crossed in the present configuration, and be injected into the AGS at a higher rigidity. By simulation, it is determined that there is sufficient strength of the AC dipole to fully flip the spin spin through each of the intrinsic resonances, and there is sufficient corrector current to preserve polarization through the three additional imperfection resonances. The higher injection rigidity facilitates the horizontal and vertical tunes being placed inside the AGS spin-tune gap at injection due to a substantial improvement on the AGS admittance at injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST008  
About • Received ※ 06 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT027 Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron injection, synchrotron, diagnostics, microtron 304
 
  • D. El Khechen, E. Blomley, E. Bründermann, E. Huttel, A. Mochihashi, A.-S. Müller, M.-D. Noll, R. Ruprecht, P. Schreiber, M. Schuh, J.L. Steinmann, C. Widmann
    KIT, Karlsruhe, Germany
 
  In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT027  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT029 Longitudinal Phase Space Benchmarking for PITZ Bunch Compressor simulation, FEL, laser, experiment 310
 
  • A. Lueangaramwong, Z. Aboulbanine, G.D. Adhikari, N. Aftab, P. Boonpornprasert, G.Z. Georgiev, J. Good, M. Groß, C. Koschitzki, M. Krasilnikov, X.-K. Li, O. Lishilin, D. Melkumyan, H.J. Qian, G. Shu, F. Stephan, G. Vashchenko, T. Weilbach
    DESY Zeuthen, Zeuthen, Germany
  • N. Chaisueb
    Chiang Mai University, Chiang Mai, Thailand
 
  The longitudinal phase space characteristics of space-charge dominated electron beams are keys to achieving bunch compression for the accelerator-based THz source at the Photo Injector Test facility at DESY in Zeuthen (PITZ). Such a THz source is proposed as a prototype for an accelerator-based THz source for pump-probe experiments at the European XFEL. A start-to-end simulation has suggested the settings of the phase of booster linear accelerator manipulating longitudinal beam characteristics to optimize the performance of the THz FEL. Although beam diagnostics after compression at PITZ are limited, the longitudinal beam characteristics as a function of the booster phase have been measured and compared with the corresponding simulations. The benchmark involves measurements of longitudinal phase space distribution for bunch charges up to 2 nC. The measurement technique assigned uses 50-um slits to achieve higher momentum and time resolution (1.8 keV/c and 0.5 ps, respectively).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT029  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT038 Development of Button BPM Electronics for the Bunch by Bunch Feedback System of 4GSR feedback, electron, electronics, storage-ring 332
 
  • S.W. Jang
    KUS, Sejong, Republic of Korea
 
  With the advent of the fourth-generation storage ring, the size of the vertical emittance of the electron beam is expected to be about 100 times smaller than that of the existing generation. In line with the development of accelerator performance, the resolution of the beam position monitor(BPM) should also be further improved, and it can be provide a more stable and uniform beam to end station users through improved bunch by bunch(BbB) feedback system compared to a system called turn by turn or fast feedback. A developed BPM electronics for BbB feedback will be installed in Bessy II booster ring at HZB Research Institute in Germany. BbB feedback BPM electronics with an improved three button BPMs will be used to measure beam position resolution and calculate an information for BbB feedback and then it will apply to the BbB feedback system. In this proceeding, we will describe the development of an upgraded beam position monitor and BPM electronics for BbB feedback.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT038  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT043 Recent Developments in Longitudinal Phase Space Tomography synchrotron, extraction, beam-diagnostic, quadrupole 347
 
  • S.C.P. Albright, A. Lasheen
    CERN, Meyrin, Switzerland
  • C.H. Grindheim
    NTNU, Trondheim, Norway
  • A.H.C. Lu
    KTH/NADA, Stockholm, Sweden
 
  Longitudinal phase space tomography has been a mainstay of longitudinal beam diagnostics in most of the CERN synchrotrons for over two decades. Originally, the reconstructions were performed by a highly optimised Fortran implementation. To facilitate increased flexibility, and leveraging the significant increase in computing power since the original development, a new version of the reconstruction code has been developed. This implements an object-oriented Python API, with the computationally heavy calculations in C++ for improved performance. The Python/C++ implementation is designed to be highly modular, enabling new and diverse use cases. For example, the macro-particle tracking for the tomography can now be performed externally, or a single set of tracked particles can be reused for multiple reconstructions. This paper summarises the features of the new implementation, and some of the key applications that have been enabled as a result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT043  
About • Received ※ 30 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK008 Options for a Light Upgrade of the ESRF Booster Synchrotron Lattice lattice, quadrupole, extraction, SRF 445
 
  • T.P. Perron, N. Carmignani, L.R. Carver, L. Hoummi, S.M. Liuzzo, S.M. White
    ESRF, Grenoble, France
  • P. Raimondi
    SLAC, Menlo Park, California, USA
 
  The EBS 6 GeV electron storage ring recently commissioned at ESRF, in Grenoble, France, is still operated using the old injector hardware. It is now one of the limiting factor of the facility. The large horizontal emittance of the booster beam affects injection efficiency, preventing from reaching 100% transfer efficiency between the 299.8 m long booster and the storage ring. Different lattice modifications going from minor optics changes to full machine renewal are considered . In this paper we will discuss different options of a "light" upgrade of the FODO lattice, keeping the RF system, vacuum chamber, power supplies, and most of the magnets. The upgrade then consists in creating a few new quadrupole families in the straight section vicinity and remove them from the main QF/QD families.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK008  
About • Received ※ 05 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK034 Energy Ramping Process for SPS-II Booster sextupole, synchrotron, emittance, quadrupole 527
 
  • S. Jummunt, S. Klinkhieo, P. Klysubun, T. Pulampong, P. Sudmuang
    SLRI, Nakhon Ratchasima, Thailand
 
  In order to provide synchrotron light with higher photon energy and more brilliant synchrotron light than that of the existing Siam Photon Source (SPS) machine, the possibility of constructing the new 3 GeV SPS-II has been proposed. For SPS-II, the synchrotron source with in-tunnel booster is a good candidate. The booster synchrotron has been designed in order to accelerate an electron beam of 150 MeV to 3 GeV before extracted to storage ring. For a clean injection in top-up operation, the aim in the design of the booster is to achieve the electron beam with a small emittance less than 10 nm-rad and to obtain a large dynamic aperture. The energy ramping process and related effects during the energy ramp are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK034  
About • Received ※ 12 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS003 Single-Sided Pumped Compact Terahertz Driven Booster Accelerator electron, gun, acceleration, experiment 625
 
  • T. Kroh, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, M. Pergament, T. Rohwer, M. Vahdani, D. Zhang
    CFEL, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • K. Kawase
    JAEA, Kizugawa, Japan
 
  Funding: European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant ’Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy’ (609920).
Scaling the RF-accelerator concept to terahertz (THz) frequencies brings several compelling advantages, including compactness, intrinsic timing between the photoemission and driving field sources, and high field gradients associated with the short THz wavelength and high breakdown threshold. Recent demonstrations of such THz powered accelerators relied on two counter-propagating single-cycle THz pulses. However, to achieve high energy gains in the acceleration process high energy THz pulses are needed which in turn require complex optical setups. Here, we present on the development of a matchbox sized multi-layered accelerator designed to boost the 50 keV output of a DC electron gun to energies of ~400 keV that only requires a single THz pulse to be powered. An integrated tunable mirror inside the structure interferes the front of the driving THz pulse with its rear part such that the field in the interaction region is optimized for efficient acceleration. This reduces the complexity of the required optical setup. Such a compact booster accelerator is very promising as electron source in ultrafast electron diffraction experiments and as booster stage prior to THz based LINACs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS003  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIZSP1 Status of the e+e Collider Projects in Asia and Europe: CEPC and FCC-ee collider, cavity, positron, operation 815
 
  • X.C. Lou
    IHEP, Beijing, People’s Republic of China
  • M. Boscolo
    LNF-INFN, Frascati, Italy
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Since the Higgs boson discovery at CERN, precision measurement of its properties has become the first priority in the field of High Energy Physics. Two laboratories, CERN from Europe and IHEP from China, have proposed large scale circular electron-positron colliders, namely FCC-ee and CEPC. Record luminosities are expected in the center of mass energy range from 90 to about 365 GeV. In this talk the statuses of both projects are reviewed: Following the publication of the first CDR FCC-ee and CEPC entering the phase of consolidation and feasibility study. Special focus will be put on R&D plans, prototyping and key technologies.  
slides icon Slides TUIZSP1 [6.718 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIZSP1  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT017 Start-to-end Simulations for Bunch Compressor and THz SASE FEL at PITZ FEL, simulation, experiment, undulator 1037
 
  • A. Lueangaramwong, P. Boonpornprasert, M. Krasilnikov, X.-K. Li, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  The magnetic bunch compressor was designed as part of a THz accelerator source being developed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) as a prototype for pump-probe experiments at the European XFEL. As an electron bunch is compressed to achieve higher bunch currents for the THz source, the beam dynamics in the bunch compressor was studied by numerical simulations. A start-to-end simulation optimizer including coherent synchrotron radiation (CSR) effects has been developed by combining the use of ASTRA, OCELOT, and GENESIS to support the design of the THz source prototype. In this paper we present simulation results to explore the possibility of improving the performance of the THz FEL at PITZ by using the developed bunch compressor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT017  
About • Received ※ 18 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK049 Upgrade of ELSA’s Booster Synchrotron RF with a Solid State Power Amplifier synchrotron, controls, operation, cavity 1327
 
  • M.T. Switka, K. Desch, D. Elsner, F. Frommberger, P. Hänisch
    ELSA, Bonn, Germany
 
  The 1.6 GeV booster synchrotron of the ELSA facility at the University of Bonn uses a DESY-type RF resonator which has been driven by a conventional klystron amplifier since its early days in 1967. The setup was modified to serve the ELSA stretcher ring as booster synchrotron in 1987, but the RF infrastructure was barely altered. As repairs of the reliable, but antiquated RF source became foreseeingly impossible due to the lack of spare part availability, the replacement of the klystron amplifier chain in favour of a state-of-the-art solid state amplifier was carried out. We describe the replacement and the operation experience with the new RF power amplifier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK049  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS003 CLS Operational Status and Future Operational Plans operation, cavity, linac, storage-ring 1389
 
  • M.J. Boland, F. Le Pimpec
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source (CLS) has been in operation for users since 2005 and recently commissioned the 22nd photon beamline. In 2021 the CLS commenced top-up operations at 220 mA, which has been a big success for the user experiments. The storage ring is now RF power limited and will require a second RF cavity to realise the design goal of 500 mA. The 250 MeV electron injector complex for the CLS booster synchrotron ring dates back to the original linac from 1962 and the Saskatchewan Accelerator Laboratory. This paper will give an overview of the present status of the accelerator systems for user operations and the operational improvement plans for a second RF cavity in the storage ring and a new linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS003  
About • Received ※ 16 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS007 A Long Booster Option for the ESRF-EBS 6 GeV Storage Ring SRF, injection, lattice, storage-ring 1405
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, T.P. Perron, S.M. White
    ESRF, Grenoble, France
 
  Despite the several fruitful upgrades undergone, the present injector complex of the ESRF-EBS has a rather large horizontal natural emittance at extraction of >60nmrad. Several light sources (SLS, ALBA, SIRIUS) have adopted booster injectors fitting in the same tunnel as the main SR. The study of such an injector is shown in this paper for the ESRF-EBS. The proposed solution is based on a DBA lattice structure with 5 quadrupole families and 2 sextupole families. The possibility to install this long booster on the internal wall of the ESRF storage ring tunnel is assessed and the adequate distances are analyzed. The possibility to keep the existing injector is also considered in order to use this additional ring as an accumulator ring. Injection and extraction schemes are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS007  
About • Received ※ 19 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS049 Digital LLRF for the Canadian Light Source cavity, LLRF, controls, operation 1538
 
  • P. Solans, F. Pérez, A. Salom
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • D.R. Beauregard, C.J. Boyle, J.M. Patel, H. Shaker, J. Stampe
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Canadian Light Source, at the University of Saskatchewan, is a 3rd generation synchrotron light source located in the city of Saskatoon, Canada. The facility comprises a 250 MeV LINAC, a full energy booster and a 2.9 GeV storage ring. The radiofrequency system in the booster consist of two 5-cell cavities feed with a single SSPA. The analogue LLRF for the booster has been recently replaced by a digital LLRF based in the ALBA design with a Picodigitizer, a stand-alone commercial solution provided by Nutaq. Also, the firmware of the new DLLRF is configurable to allow operation with a superconducting cavity feed with one amplifier, thus providing the possibility to replace the CLS SR LLRF as well. The main hardware components, the basic firmware functionalities and the commissioning measurements of the new DLLRF for the CLS booster will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS049  
About • Received ※ 08 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 30 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS061 RF System Design for Elettra 2.0 cavity, storage-ring, operation, HOM 1570
 
  • C. Pasotti, M. Bocciai, L. Bortolossi, M. Rinaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The Elettra 2.0 low emittance light source project aims to a substantial increase of the brilliance and coherence fraction of the source improving, at the same time, the storage ring stability and reliability. The Radio Frequency (RF) system plays a pivotal role in the beam quality, stability and reliability for the user operation. This paper will cover the design and the implemented strategy to meet these features for the Elettra 2.0 RF system. Starting point of the new RF design is the final choice of the RF frequency, 500 MHz, and the available room, 1260 mm, to install the accelerating cavities. Thanks to the 500 MHz frequency choice, some components of the new RF system for Elettra 2.0 are already installed and set into operation in the current Elettra storage ring. Their features and performance’s optimization can therefore start well in advance with respect to the foreseen operation the new Elettra 2.0 storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS061  
About • Received ※ 06 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 04 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT001 NICA Ion Collider and Plans of Its First Operations collider, injection, electron, luminosity 1819
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, A.R. Galimov, E.V. Gorbachev, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, V.A. Lebedev, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) is under assembling in JINR. The NICA goals are providing of colliding beams for studies of hot and dense strongly interacting baryonic matter and spin physics. The heavy ion injection complex of Collider NICA consisting from following accelerators: new acting heavy ion linac HILAC with RFQ and IH DTL sections at energy 3.2 MeV/u, new acting superconducting Booster synchrotron at energy up 600 MeV/u, acting superconducting synchrotron Nuclotron at gold ion energy 3.9 GeV/n, will starts operation with first ion beams in beginning of 2022. The assembling of two Collider storage rings with two interaction points was done in December 2021. The status of acceleration complex NICA and plans of its first operation is under discussion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT001  
About • Received ※ 30 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK013 Direct Impedance Measurement of the CERN PS Booster Finemet Cavities impedance, cavity, simulation, proton 2064
 
  • S.C.P. Albright, M.E. Angoletta, D. Barrientos, A. Findlay, M. Jaussi, J.C. Molendijk
    CERN, Meyrin, Switzerland
 
  Over CERN’s Long Shutdown 2, the conventional ferrite-loaded cavities of the PS Booster were replaced with wide-band Finemet-loaded cavities. The Finemet cavities bring many operational advantages, but also represent a significant broadband impedance source. The impedance is mitigated by servo loops, which suppress the induced voltage, reducing the impedance as seen by the beam. Accurately including the impedance of the cavity and the effect of the servoloops in longitudinal tracking simulations is essential to predict the performance with beam. This paper discusses the results of a measurement campaign, which is intended to give a direct measurement of the cavity impedance. Using the detected voltage and the measured beam profile, the cavity impedance can be inferred and used to improve beam dynamics modelling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK013  
About • Received ※ 26 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS048 A Flexible Online Optimizer for SPS injection, emittance, simulation, storage-ring 2362
 
  • T. Pulampong, N. Suradet
    SLRI, Nakhon Ratchasima, Thailand
 
  Siam Photon Source (SPS) machine in Thailand has been operating for more than two decades with limited diagnostic systems. It is very challenging to efficiently tune and operate the machine. With online optimization, only variables and objectives are required to tune for better solutions. It this work, a flexible optimizer was developed. Objectives and variables can be freely defined based on available hardware in the form of Process Variables (PVs). Several multi-objective and Robust Conjugated Direction Search (RCDS) algorithms are provided. The online optimizer was tested on the SPS machine to improved the injection efficiency. Due to its flexibility, the optimizer can also be used for other systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS048  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT024 MIST - The MESA-Injector Source Two cathode, electron, laser, simulation 2624
 
  • M.A. Dehn, P.S. Plattner
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
 
  Funding: Work supported by the German science ministry BMBF through Verbundforschung
The new accelerator MESA (Mainz Energy Recovering Superconducting Accelerator) will provide an average CW electron beam current of up to 10 mA. Operating at 1.3 GHz, this corresponds to a bunch charge of 7.7 pC. The new DC photoemission source MIST is optimized for these requirements. A challenge is heating of the photocathode at high laser power. By a suitable mechanical construction and the use of specific materials, the heat can be dissipated during operation. Options for further improvements are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT024  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT038 Sirius Injection Optimization injection, alignment, emittance, linac 2672
 
  • X.R. Resende, M.B. Alves, L. Liu, A.C.S. Oliveira, J.V. Quentino, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is the new 3 GeV storage ring (SR)-based 4th generation synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) located in the CNPEM campus, in Campinas. The foreseeable move to a top-up injection scheme demands improvement of injection efficiency and repeatability levels. In this work we report on the latest efforts in optimizing the Sirius injection system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT038  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT042 Studies for a Laser Wakefield Driven Injector at ELSA synchrotron, laser, linac, plasma 2686
 
  • K. Kranz, K. Desch, D. Elsner, M.T. Switka
    ELSA, Bonn, Germany
 
  At the University of Bonn, Germany, the storage ring ELSA extracts electrons with energies up to 3.2 GeV to hadron physics and novel detector testing experiments. We study the feasibility of replacing the current 26 MeV LINAC injector with a laser wakefield accelerator (LWA). For this, contemporary parameters from current LWA setups at other laboratories are assumed and matched to the acceptance of the booster synchrotron. Moreover, a conceptional draft of a potential LWA setup is created. This takes into consideration the influence of building conditions such as available floor space and building vibrations to estimate a setup and laser beam stability of a plasma generating high power laser system and beamline to the plasma cell. The methods and intermediate results of this study will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT042  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT049 Beam Dynamics Studies for the Diamond-II Injector storage-ring, injection, emittance, extraction 2708
 
  • I.P.S. Martin, R.T. Fielder, J. Kallestrup, T. Olsson, B. Singh
    DLS, Oxfordshire, United Kingdom
  • J.K. Jones, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The replacement, low-emittance booster for the Diamond-II project will have a racetrack structure of 36 units cells constructed from alternating focussing and defocussing combined-function dipoles*. In this paper we report on how the design and performance characterisation of the booster has recently developed; this includes an increase in the injection energy from 100 to 150 MeV, a modified circumference to match to the storage ring RF frequency, and a new nominal tune-point to improve the performance and enable emittance exchange. The influence of the vacuum chamber impedance and intra-beam scattering on the electron bunch parameters during the ramp are presented, along with the necessary changes to the transfer line layouts.
*I.P.S. Martin, et al. "Progress with the Booster Design for the Diamond-II Upgrade", in Proc. IPAC’21, paper ID MOPAB071, Campinas, Brazil, May 2021
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT049  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT056 Emittance Exchange at Sirius Booster for Storage Ring Injection Improvement injection, emittance, coupling, synchrotron 2722
 
  • J.V. Quentino, M.B. Alves, F.H. de Sá
    LNLS, Campinas, Brazil
 
  SIRIUS is the new 4th generation storage ring based synchrotron light source built and operated by the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM). Currently, the efficiency of the horizontal off-axis injection system of the storage ring is still not suitable for top-up operation due to a smaller than expected horizontal dynamic aperture. In this work, we report the simulations and experimental results of transverse emittance exchange (TEE) performed at SIRIUS booster by crossing a coupling difference resonance during energy ramp, with the goal of decreasing the injected horizontal beam size and improve the off-axis injection efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT056  
About • Received ※ 20 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS008 Physics Design of Electron Flash Radiation Therapy Bemaline at PITZ electron, radiation, quadrupole, simulation 2954
 
  • X.-K. Li, Z. Aboulbanine, Z. Amirkhanyan, M. Groß, M. Krasilnikov, A. Lueangaramwong, R. Niemczyk, A. Oppelt, S. Philipp, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Loisch, F. Obier, M. Schmitz
    DESY, Hamburg, Germany
 
  The Photo Injector Test facility at DESY in Zeuthen (PITZ) is preparing an R&D platform for electron FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and radiation biology based on its unique beam parameters: ps scale bunches with up to 5 nC bunch charge at MHz bunch repetition rate in bunch trains of up to 1 ms in length repeating at 10 Hz. This platform is called FLASHlab@PITZ. The PITZ beam is routinely accelerated to 22 MeV, with a possible upgrade to 250 MeV for VHEE radiotherapy in the future. The 22 MeV beam will be used for dosimetry experiments and studying biological effects in thin samples in the next years. A new beamline to extract and match the beam to the experimental station is under physics design. The main features include: an achromatic dogleg to extract the beam from the PITZ beamline; a sweeper to scan the beam across the sample within 1 ms for tumor painting studies; and an imaging system to keep the beam size small at the sample after scattering in the exit window while maintaining the scan range of the sweeper. In this paper, the beam dynamics with bunch charges from 10 pC to 5 nC in and the preparation of the new beamline will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS008  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS055 Commissioning of the SOCHI Applied Station Beam and Beam Transfer Line at the NICA Accelerator Complex vacuum, controls, detector, radiation 3099
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, D.E. Donets, G.A. Filatov, A.R. Galimov, K.N. Shipulin, E. Syresin, A. Tuzikov, V.I. Tyulkin
    JINR, Dubna, Moscow Region, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    LPI, Moscow, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
  • A.M. Tikhomirov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The SOCHI (Station of CHip Irradiation) station was constructed at the NICA accelerator complex for single event effect testing of decapsulated microchips with low-energy ion beams (3.2 MeV/n). The peculiarity of microchip radiation tests in SOCHI is connected with the pulse beam operation of the heavy ion linear accelerator (HILAc) and a restriction on the pulse dose on the target. The SOCHI station construction, the equipment and the results of the first beam runs are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS055  
About • Received ※ 26 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)