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Abstract

In the past, the chromaticity values at the DELTA electron

storage ring were manually adjusted using 15 individual sex-

tupole power supply circuits, which are combined into 7 mag-

net families. To automate and optimize the time-consuming

setting process, various machine learning approaches were

investigated. For this purpose, simulations were first per-

formed using a storage ring model and the performance

of different neural networks based models was compared.

Subsequently, the neural networks were trained with experi-

mental data and successfully implemented for chromaticity

correction in real accelerator operation.

INTRODUCTION

DELTA is a 1.5–GeV electron storage ring facility oper-

ated by the TU Dortmund University as a synchrotron light

source [1] and as a facility for ultrashort pulses in the VUV

and THz regime [2, 3].

In recent years, different machine learning (ML) based

projects have been investigated to support automated mon-

itoring and operation of the DELTA electron storage ring

facility [4]. This includes self-regulating global and local

orbit correction of the stored electron beam [5,6] and a be-

tatron tune feedback [7]. In addition, a ML-based electron

transfer rate (injection) optimization is in preparation [8].

So far, the storage ring chromaticity values have been

adjusted empirically based on experience. The setting of de-

sired target values can only be achieved by time-consuming

trial and error. For this reason, ML-based algorithms for

automated chromaticity adjustment were investigated, very

similar to the already implemented ML-based betatron tunes

control [7].

In previous studies, the workflow was successfully sim-

ulated on a storage ring model. Therefore, the correlation

between sextupole magnet strength changes and the related

chromaticity shifts was investigated. In this case, the mag-

nets were grouped via software in four horizontal and three

vertical focusing families. Here, clear correlations were iden-

tified during training of conventional 3-layered feed-forward

neural networks (NNs), without any over- or underfitting is-

sues. Afterwards, the trained NN-based models were able to

match the chromaticity to any desired value in the simulated

storage ring. Some results are summarized in [4] and [8].
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Figure 1: Distribution of 3000 chromaticity shifts (top) in-

voked by uniformly randomized strength variations of 15

independent sextupole power supplies (PS) circuits (bottom).

The data are obtained by AT optics simulations based on a

DELTA storage ring lattice model.

ML-BASED SIMULATED

CHROMATICITY CONTROL

To increase the degree of freedom for automated chro-

maticity control, we repeated the pre-studies, but now uti-

lizing all 15 sextupole PS circuits individually. A detailed

lattice model of the DELTA storage ring served as the basis

for x,y-coupled optics and chromaticity (ξx , ξy) computa-

tions within the Accelerator Toolbox (AT) framework [9,10].

To acquire suitable ML training data, the sextupole strengths

were randomly varied for all 15 PS individually and for each

strength change setting, the associated chromaticity shifts

were calculated. Fig. 1 visualizes the corresponding AT

simulation results.

These labelled data pairs (strength variations and chro-

maticity shifts) were used for supervised training of multi-

layered NNs. The NNs serve as surrogate models for the

chromaticity determination, which afterwards are applied to

automatically adjust and control the chromaticity values.

Fig. 2 illustrates a sample application for a simulated

chromaticity matching run performed with a 3-layered NN

which has been trained by scaled conjugate gradient (scg)

back-propagation [11] applying the data depicted in Fig. 1.

The natural chromaticity (ξx = −21, ξy = −8) which occurs

with all sextupoles switched off (0. iteration) can be adjusted

to full chromaticity compensated values (4. iteration, ξx =

ξy = 0) by the ML-based control loop. The step size (number

of iterations) depends mainly on the granularity (∆ξx,y) of
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Figure 2: Example for verification of NNs trained by sim-

ulated data (see Fig. 1) and applied to the DELTA storage

ring model. The desired target values for compensated chro-

maticity (goal: ξx = ξy = 0) were reached in 4 iterative

steps (red curves) starting at the setting for natural chro-

maticity (ξx = −21, ξy = −8, sextupoles switched off). The

corresponding sextupole strength adaptions are shown in

blue lines. In total, 15 individual power supplies (PS) are

available to operate 7 sextupole magnet families. They are

grouped in four horizontal (top: SF1, SF2, SF3, SS3) and

three vertical (bottom: SD1, SD2, SS4) focusing families.

The indices number the individual PS circuits.

the training data (see Fig. 1). During the magnet settings, all

strengths remain below the maximum limit of 4 [1/m3] and

single PS circuits adjust slightly differently in some cases.

REAL MACHINE OPERATION

A similar approach was adapted for real machine opera-

tion. Here too, all seven sextupole families were split into

15 individual PS circuits. For chromaticity determination

in real storage ring operation, the cavity radiofrequency

(RF) must be shifted and then the tune shifts ∆Q are deter-

mined via a FFT spectrum from turn-by-turn orbit data at a

dedicated beam position monitor (BPM). See Fig. 3 as an

example. With ∆Q = ξ · ∆p/p follows for the chromaticity

ξ = ∆Q · p/∆p = −αch∆ fβ/∆ fRF. ∆ fRF corresponds to

changes of the cavity radiofrequency, ∆ fβ is the measured

betatron frequency shift, h is the harmonic number and the

momentum compaction factor αc = (∆L/L)/(∆p/p) relates

the relative orbit path length change ∆L/L to the relative mo-

mentum change ∆p/p. The precision of the FFT method is

limited to plus or minus half a spectrum bin, which is in our

case ±2.5 kHz, corresponding to a fast tune measurement

resolution of ±1 ·10−3 [12]. To enable rapid data acquisition

(DAQ) on the one hand but to avoid beam losses on the other

hand the RF shift was stepwise adjusted to a limit of ±6 kHz.

This corresponds to a maximum tune shift of approximately

±1·10−2 and results finally in a limited chromaticity measure-

ment precision of about 0.2 (see the top of Fig. 4 and Fig. 5).

Figure 3: FFT beam spectrum from turn-by-turn orbit data

recorded at a dedicated BPM. Before (blue) and after (red)

cavity radiofrequency (RF) variation. The horizontal and

vertical chromaticities are calculated by determining the

betatron tune peak shifts induced by the cavity RF variation.

In dedicated data mining shifts a Python/EPICS-based DAQ-

script varied randomly individual PS current values related

to a nominal sextupole reference setting and then measured

the corresponding chromaticity changes (∆ξx,y). To avoid

beam losses the magnet current variations were limited to

+/-15% (uniformly and Gaussian distributed) and were addi-

tionally extracted if sextupole magnet hardware limits were

exceeded. Due to the limited chromaticity measurement res-

olution, the values pile on a fixed ∆ξx,y-grid. The histogram

plot (see Fig. 4) shows the number of measurements with

the same chromaticity shift per bin. The measurement for

each data pattern took about 20 seconds. After data clean-

ing of mismeasurements, we obtained 2749 data patterns

which were again used for training of classical multi-layered,

fully-connected feed-forward NNs. The regression results

obtained from the application of a trained NN are shown

exemplarily in Fig. 5. In this example the validation regres-

Figure 4: Distribution of 2749 measured chromaticity shifts

(cleaned data) invoked by uniformly and Gaussian random-

ized strength variations of 15 independent sextupole power

supplies circuits (bottom). Due to granularity constrictions

of the chromaticity measurements, all values are distributed

on a resolution-limited grid (top).
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Figure 5: Comparison between measured data and model

predictions of a scaled conjugate gradient back-propagation

(scg, [11]) trained NN-based surrogate model. The complete

set of 2749 experimental data patterns was divided into 70%

for pure network training and 15% of the data are applied as

"unseen" data sets for validation and test, respectively. The

R-values rate the correlation quality between experimental

data and NN model prediction.

sion coefficient is calculated to R = 0.92, indicating high

modelling capabilities for chromaticity predictions. To make

a prediction on how to improve the chromaticity a weighting-

function-driven optimization algorithm, like Bayesian op-

timization using Gaussian Processes (GP) [13–15], scored

the output of the NN-based surrogate models. If required,

the score function can also consider additional boundary

conditions, e. g. maximum sextupole strength, beam life-

time or PS current stepsize. Afterwards, the optimization

results (new predicted sextupole strength settings) are ap-

plied to the storage ring. Then the associated chromaticity

corrections are experimentally measured (see above), giving

new start values for the next optimization iteration until the

desired target chromaticity is reached. An example of such

a chromaticity matching procedure is shown in Fig. 6 (red

curves). In this case, 10 steps were necessary to obtain the

target values (ξx = ξy = 0) starting at ξx = −10, ξy = −4.4,

which were obtained with sextupole magnets operated at

half nominal strength. The maximum and minimum step

sizes depend mainly on the ∆ξx,y-granularity of the training

data sets. The corresponding sextupole strength changes are

also depicted in Fig. 6 (blue curves). This showed, that the

originally identical family values split into different values

during the matching run. This reflects the asymmetry of the

real machine optics. For comparison, the same optimization

was carried out, but now while maintaining the fixed sex-

tupole family membership (see Fig. 7). In both examples, the

desired chromaticity (ξx = ξy = 0) was achieved in about

10 iterations without exceeding the technical current limit of

15 A. More detailed studies are currently being conducted.

SUMMARY AND OUTLOOK

It has been shown that classical machine learning methods

like conventional feed-forward neural networks are appro-

Figure 6: Example application to test NNs trained by exper-

imental data (see Fig. 4) and applied to the real storage ring.

The desired target values for compensated chromaticity (tar-

get: ξx = ξy = 0) were reached in 10 iterative steps starting

with chromaticity values of ξx = −10 and ξy = −4.4.

Figure 7: The same optimization run as shown in Fig. 6.

Here with fixed magnet family affiliations, grouped in 4 hor-

izontally and 3 vertically focussing PS circuits. Therefore,

the lines of the indexed sextupole PS circuits lie on top of

each other.

priate for chromaticity control in simulation as well as in

the real storage ring operation. Splitting the PS-families

into individual PS circuits has increased the flexibility to

approach arbitrary chromaticity settings. Further studies

need to be conducted to understand the different correction

behaviour in simulation and the real storage ring operation,

respectively. Work is currently in preparation to implement

the entire ML-workflow on a dedicated ML-server applying

software container (Docker [16]) techniques. In the future

ML-based methods could additionally be extended to opti-

mize the sextupole settings with respect to dynamic aperture

and thus to increase the stored beam life time.
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