Keyword: resonance
Paper Title Other Keywords Page
MOPOST003 BBQ and Doughnut Beams: A Tasty Recipe for Measuring Amplitude Dependence of the Closest Tune Approach coupling, quadrupole, octupole, site 42
 
  • E.H. Maclean, F.S. Carlier, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Beam-based observations and theoretical studies have demonstrated the existence of a significant amplitude dependence of the closest tune approach (ADECTA) in the LHC. This effect has the potential to generate significant distortion of the tune footprint and thus is of interest in regard to Landau damping. Conventionally ADECTA has been studied through saturation of tune separation with action during amplitude-detuning type measurements. In this paper, an alternative measurement technique is proposed and results of initial tests with beam are presented. The novel technique attempts to measure ADECTA by performing a classical closest approach tune scan, using proton beams in the LHC, which have been kicked and allowed to decohere, effectively giving a large action doughnut beam. It is shown that the tune and closest approach of the doughnut beams can be measured using the existing LHC Base-Band tune (BBQ) measurement system, and an amplitude dependence can be observed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST003  
About • Received ※ 08 June 2022 — Revised ※ 20 June 2022 — Accepted ※ 12 July 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST004 Beam-Based Measurement of Skew-Sextupole Errors in the CERN Proton Synchrotron sextupole, coupling, dipole, proton 46
 
  • S.J. Horney, A. Huschauer, E.H. Maclean
    CERN, Meyrin, Switzerland
 
  During Proton Synchrotron (PS) commissioning in 2021, large beam losses were observed when crossing the 3Qy resonance if the Beam Gas Ionization (BGI) profile monitor was enabled. This indicated the presence of a strong skew-sextupole source in this instrument. Beam-based measurements of the skew sextupole component in the BGI magnet were performed, in order to benchmark the BGI magnetic model and to provide quantitative checks of sextupole corrections determined empirically to minimize the beam-losses. In this contribution, results of the successfully performed measurements are presented, including tune feed-down, chromatic coupling and resonance driving terms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST004  
About • Received ※ 08 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST008 Simulations of Protons to Extraction at Gγ=7.5 in the AGS Booster proton, dipole, booster, polarization 62
 
  • K. Hock, H. Huang, F. Méot
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To prepare for polarized helion collisions at the Electron Ion Collider (EIC), polarization transmission at the injectors for the Hadron Storage Ring must be studied and optimized. To this effect, an AC dipole has been installed in the AGS Booster to maximize polarization transmission of helions through several intrinsic resonances. This installation also allows polarized protons to be extracted at higher energy without polarization loss. By increasing the proton extraction energy from $Gγ$ = 4.5 to $Gγ$ = 7.5, protons will cross the $Gγ$ = 0 + νy$ and $Gγ = 12 - νy$ depolarizing vertical intrinsic resonances, the $Gγ$ = 5, 6, and 7 imperfection resonances in addition to the $Gγ$ = 3, 4 that are crossed in the present configuration, and be injected into the AGS at a higher rigidity. By simulation, it is determined that there is sufficient strength of the AC dipole to fully flip the spin spin through each of the intrinsic resonances, and there is sufficient corrector current to preserve polarization through the three additional imperfection resonances. The higher injection rigidity facilitates the horizontal and vertical tunes being placed inside the AGS spin-tune gap at injection due to a substantial improvement on the AGS admittance at injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST008  
About • Received ※ 06 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST038 Excitation of the σll = 90° Resonance by the Cavity RF Accelerating Fields focusing, space-charge, linac, cavity 152
 
  • J.-M. Lagniel
    GANIL, Caen, France
 
  In RF linacs the longitudinal focusing is done by nonlinear forces and at high accelerating fields the zero-current longitudinal phase advance per longitudinal focusing period σ0ll can be high. The nonlinear components of the RF field (sextupolar, octupolar and higher order components) can then excite parametric resonances, including the 4th-order resonance (σll = 90°) when σ0ll is higher than 90°, inducing strong longitudinal emittance growths and acceptance reductions. The longitudinal beam dynamics is therefore complex, even when the nonlinear space-charge forces are ignored. The parametric resonance excitation by the RF field is analyzed before discussing the additional effect of the nonlinear space-charge forces, in particular to explain why the zero-current longitudinal phase advance per transverse focusing period σ0lt is not a relevant parameter. Examples are given in the SPIRAL2 linac case.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST038  
About • Received ※ 16 May 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST040 On a Framework to Analyze Single-Particle Non-Linear Beam Dynamics: Normal Form on a Critical Point lattice, operation, framework, status 160
 
  • M. Titze
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Normal form analysis around a stable fixed point is a well-established tool in accelerator physics and has proven to be invaluable for an understanding of non-linear beam dynamics. In this work we present progress in developing a modular Python framework to analyze some of the non-linear aspects of a storage ring, by directly operating with the given Hamiltonians. Hereby we have implemented Birkhoff’s normal form and Magnus expansion. This leads to a flexible framework to perform calculations to high order and, moreover, to relax the constraint of stability to also include certain unstable fixed points in the analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST040  
About • Received ※ 31 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST048 Efficient Representation of Realistic 3D Static Magnetic Fields for Symplectic Tracking and First Applications for Frequency Analysis and Dynamic Aperture Studies in ELENA dynamic-aperture, electron, lattice, emittance 187
 
  • L. Bojtár
    CERN, Meyrin, Switzerland
 
  The algorithm called SIMPA has a new and unique approach to long-term 4D tracking of charged particles in arbitrary static electromagnetic fields. Field values given on the boundary of the region of interest are reproduced by an arrangement of hypothetical magnetic or electric point sources surrounding the boundary surface. The vector and scalar potentials are obtained by summing the contributions of each source. The second step of the method improves the evaluation speed of the potentials and their derivatives by orders of magnitude. This comprises covering the region of interest by overlapping spheres, then calculating the spherical harmonic expansion of the potentials on each sphere. During tracking, field values are evaluated by calculating the solid harmonics and their derivatives inside a sphere containing the particle. Frequency analysis and dynamic aperture studies in ELENA is presented. The effect of the end fields and the perturbation introduced by the magnetic system of the electron cooler on dynamic aperture is shown. The dynamic aperture calculated is the direct consequence of the geometry of the magnetic elements, no multipole errors have been added to the model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST050 Third-Order Resonance Compensation at the FNAL Recycler Ring sextupole, proton, experiment, operation 195
 
  • C.E. Gonzalez-Ortiz
    MSU, East Lansing, Michigan, USA
  • R. Ainsworth
    Fermilab, Batavia, Illinois, USA
  • P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  The Recycler Ring (RR) at the Fermilab Accelerator Complex performs slip-stacking on 8 GeV protons, doubling the beam intensity delivered to the Main Injector (MI). At MI, the beam is accelerated to 120 GeV and delivered to the high energy neutrino experiments. Femilab’s Proton Improvement Plan II (PIP-II) will require the Recycler to store 50% more beam. Simulations have shown that the space charge tune shift at this new intensity will lead to the excitation of multiple resonance lines. Specifically, this study looks at normal sextupole lines 3 Qx=76 and Qx+2Qy=74, plus skew sextupole lines 3 Qy=73 and 2 Qx+Qy=75. Dedicated normal and skew sextupoles have been installed in order to compensate for these resonance lines. By measuring and calculating the Resonance Driving Terms (RDT), this study shows how each of the resonance lines can be compensated independently. Furthermore, this study shows and discusses initial investigations into compensating multiple lines simultaneously.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST050  
About • Received ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST051 Study of Transverse Resonance Island Buckets at CESR lattice, sextupole, simulation, damping 199
 
  • S. Wang, V. Khachatryan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by NSF PHYS-1416318 and DMR-1829070.
A 6-GeV lattice with the horizontal tune near a 3rd-order resonance line at 3νx=2 is designed for studying the transverse resonance island buckets (TRIBs) at the Cornell Electron Storage Ring (CESR). The distribution of 76 sextupoles powered individually is optimized to maximize the dynamic aperture and achieve the desired amplitude-dependent tune shift αxx and the resonant driving term h30000, which are necessary conditions to form stable island buckets. The particle tracking simulations are developed to check and confirm the formation of TRIBs at different tunes with clearing kicks in this TRIBs lattice. Finally, the lattice is loaded in CESR and the TRIBs are successfully observed when the horizontal fractional tune is adjusted to 0.665, close to the 3rd-order resonance line. Bunch-by-bunch feedback is also explored to clear the particles in the main bucket and the island buckets, respectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST051  
About • Received ※ 20 May 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST053 Transverse Resonance Islands Buckets at SPEAR3 kicker, lattice, experiment, feedback 203
 
  • J. Kim, J.A. Safranek, K. Tian
    SLAC, Menlo Park, California, USA
 
  We present populating bunches into the transverse resonance islands buckets (TRIBs) on SPEAR3. As one of operation modes for the timing-mode or providing separated bunches in transverse direction, we are exploring TRIBs on SPEAR3. Experience and analysis on applying kicks multiple times using the bunch-by-bunch feedback kicker to move bunches into the TRIBs is described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST053  
About • Received ※ 06 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST055 The EIC Rapid Cycling Synchrotron Dynamic Aperture Optimization dynamic-aperture, electron, sextupole, lattice 210
 
  • H. Lovelace III, C. Montag, V.H. Ranjbar
    BNL, Upton, New York, USA
  • F. Lin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  With the design of the Electron-Ion Collider (EIC), a new Rapid Cycling Synchrotron (RCS) must be designed to accelerate the electron bunches from 400 MeV up to 18 GeV. An optimized dynamic aperture with preservation of polarization through the energy ramp was found. The codes DEPOL, MAD-X, and BMAD are used in modeling the dynamics and spin preservation. The results will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST055  
About • Received ※ 27 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST056 Interplay between Space Charge and Intra-beam Scattering for the CERN Ion Injectors simulation, space-charge, emittance, scattering 214
 
  • M. Zampetakis, F. Antoniou, F. Asvesta, H. Bartosik, Y. Papaphilippou
    CERN, Meyrin, Switzerland
 
  The CERN ion injectors, SPS and LEIR, operate in a strong space charge and intra-beam scattering regime, which can lead to degradation of their beam performance. To optimize machine performance requires thus to study the interplay of these two effects in combined space charge and intrabeam scattering tracking simulations. In this respect, the kinetic theory approach of intra-beam scattering has been implemented in pyORBIT and benchmarked against analytical models. First results of combined space charge and intra-beam scattering simulations for SPS and LEIR are presented in this contribution. The simulation results are compared with observations from beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST056  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST057 Characterization of the Vertical Beam Tails in the CERN PS Booster injection, emittance, space-charge, scattering 218
 
  • T. Prebibaj, F. Antoniou, F. Asvesta, H. Bartosik, C. Bracco, G.P. Di Giovanni, E. Renner
    CERN, Meyrin, Switzerland
 
  The CERN Proton Synchrotron Booster (PSB) went through major upgrades in the framework of the LHC Injectors Upgrade Project (LIU) aiming to double the brightness of the LHC beams. Operation restarted in early 2021, demonstrating the expected performance improvement. The high-brightness beams, nevertheless, appear to have overpopulated tails in the vertical beam profiles, both at injection and at extraction energies. In an attempt to understand the origin and evolution of the observed tails, systematic profile measurements were performed for different machine and beam configurations using Wire Scanners (WS). The results are presented in this report and compared to simulations. The effect of the Coulomb scattering of the wire to the beam distribution is also addressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST057  
About • Received ※ 03 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST058 Studies on the Vertical Half-Integer Resonance in the CERN PS Booster space-charge, injection, brightness, quadrupole 222
 
  • T. Prebibaj, F. Antoniou, F. Asvesta, H. Bartosik
    CERN, Meyrin, Switzerland
  • G. Franchetti
    GSI, Darmstadt, Germany
 
  Following the upgrades of the LHC Injectors Upgrade Project (LIU), the Proton Synchrotron Booster (PSB) at CERN successfully delivers beams with double brightness. An important contributing factor for this was the dynamic correction of the beta-beating induced by the injection chicane, which allowed stable operation closer to the half-integer resonance. Ideally, injection above the half-integer resonance could further improve the beam brightness. In this context, a series of studies were initiated in order to characterize the effects of space charge when crossing the half-integer resonance. In this contribution, the first results of these investigations are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST058  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT011 Transverse Excitation and Applications for Beam Control betatron, extraction, controls, simulation 251
 
  • P.J. Niedermayer, R. Singh
    GSI, Darmstadt, Germany
 
  Transverse excitation of stored particle beams is required for a number of applications in accelerators. Using a time-varying, transverse electric field with a dedicated frequency spectrum, the amplitude and coherence of betatron oscillations can be increased in a controlled manner. This allows for determination of the betatron tune from turn-by-turn position measurements, control of transverse beam shapes, as well as extraction of stored beams. For studies of beam excitation, a custom signal generator is being developed. It is based on software-defined radio (SDR) which allows for configurable signal characteristics and tuneable spectra. This approach enables usage for multiple applications in beam diagnostics and control. To determine appropriate excitation spectra, studies of particle dynamics in presence of excitation are being carried out. Nonlinear fields are also incorporated to account for beam extraction conditions, which affects frequency spectra of beam motion due to detuning effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT011  
About • Received ※ 30 May 2022 — Accepted ※ 10 June 2022 — Issue date ※ 16 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK032 An N-BPM Momentum Reconstruction for Linear Transverse Coupling Measurements in LHC and HL-LHC coupling, optics, lattice, controls 519
 
  • A. Wegscheider, R. Tomás García
    CERN, Meyrin, Switzerland
 
  The measurement and control of linear transverse coupling is important for the operation of an accelerator. The calculation of the linear transverse coupling resonance driving terms (RDTs) ’1001 and ’1010 relies on the complex spectrum of the turn-by-turn motion. To obtain the complex signal, a reconstruction of the particle motion is needed. For this purpose, the signal of a second BPM with a suitable phase shift is usually used. In this work, we explore the possibility of including more BPMs in the reconstruction of the transverse momentum, which could reduce the effects of statistical errors and systematic uncertainties. This, in turn, could improve the precision and accuracy of the RDTs, which could be of great benefit for locations where an exact knowledge of the transverse coupling or other RDTs is important. We present the development of a new method to reconstruct the particle’s momentum that uses a statistical analysis of several nearby BPMs. The improved precision is demonstrated via simulations of LHC and HL-LHC lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK032  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK055 Designing Linear Lattices for Round Beam in Electron Storage Rings Using SLIM coupling, emittance, quadrupole, lattice 592
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
 
  Funding: This research used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office ofScience by Brookhaven National Laboratory under Contract No. DE-SC0012704.
For some synchrotron light source beamline applications, a round beam is preferable to a flat one. A conventional method of obtaining round beam in an electron storage ring is to shift its tune close to a linear difference resonance. The linearly coupled beam dynamics is analyzed with perturbation theories, which have certain limitations. In this paper, we adopt the Solution by LInear Matrices (SLIM) analysis to calculate exact beam sizes to design round beam lattices. The SLIM analysis can deal with a generally linearly coupled accelerator lattice. The effects of various coupling sources on beam emittances and sizes can be studied within a self-consistent frame. Both the on- and off-resonance schemes to obtain round beams are explained with examples. Commonly used radiator devices, such as planar wigglers and undulators, can be incorporated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK055  
About • Received ※ 16 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK056 Data-Driven Chaos Indicator for Nonlinear Dynamics and Applications on Storage Ring Lattice Design dynamic-aperture, storage-ring, lattice, linear-dynamics 596
 
  • Y. Li, R.S. Rainer
    BNL, Upton, New York, USA
  • Y. Jiao, J. Wan
    IHEP, People’s Republic of China
  • A. Liu
    Purdue University, West Lafayette, Indiana, USA
 
  Funding: This research mainly used resources of the NSLS-II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704.
A data-driven chaos indicator concept is introduced to characterize the degree of chaos for nonlinear dynamical systems. The indicator is represented by the prediction accuracy of surrogate models established purely from data. It provides a metric for the predictability of nonlinear motions in a given system. When using the indicator to implement a tune-scan for a quadratic Henon map, the main resonances and their asymmetric stop-band widths can be identified. When applied to particle transportation in a storage ring, as particle motion becomes more chaotic, its surrogate model prediction accuracy decreases correspondingly. Therefore, the prediction accuracy, acting as a chaos indicator, can be used directly as the objective for nonlinear beam dynamics optimization. This method provides a different perspective on nonlinear beam dynamics and an efficient method for nonlinear lattice optimization. Applications in dynamic aperture optimization are demonstrated as real world examples.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK056  
About • Received ※ 16 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST016 Status of LLRF and Resonance Control Dedicated Algorithms Extension for PolFEL controls, cavity, operation, FEL 880
 
  • W. Jalmuzna, W. Cichalewski, A. Napieralski, P.S. Sekalski
    TUL-DMCS, Łódź, Poland
 
  PolFEL (POLish Free Electron Laser) is the new super-conducting based facility, which is under construction in Poland. It will provide a continuous electron beam with energy up to 160 MeV, which will be converted to light pulses with wavelengths as short as 150 nm. CW (Continuous Wave) operation of the superconducting linear accelerator with narrow bandwidth and high electromagnetic field gradient (presumably above 30 MV/m for single structure) creates new challenges while dealing with RF field stability, the influence of mechanical de-tuning of resonating structures and must take into account all limits induced by power amplifiers and cryo-system. The real-time control algorithm responsible for RF field, motor tuners, and piezo control must strictly interact with each other to provide the satisfactory performance of the whole facility. In addition, constant monitoring of such parameters as detuning, bandwidth, power margins of the amplifier, state of cavities must be done. The paper presents the current status of implementation of PolFEL’s LLRF Controller (extending GDR to other modes of operation as SEL, PLL) and Piezo Controller (both hardware and firmware layers).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST016  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK028 Tuning of Superconducting Cavities Using the FFT of Transmitted Power cavity, klystron, operation, SRF 1268
 
  • E. Laface, C.G. Maiano, P. Pierini, M.Y. Wang
    ESS, Lund, Sweden
 
  We implemented a method to tune the ESS superconducting cavities based on the spectral analysis of the high resolution data available from the Low Level RF system (LLRF) for the transmitted power, without the need of connecting a network analyzer or any other dedicated instrumentation along the RF chain. A frequency peak up to 4 MHz off from the resonating frequency can be detected and used to control the stepper motor of the tuner until the cavity is stretched to the proper length to reach the correct operation frequency. Experience of its use at the ESS Test Stand 2 (TS2) facility at Lund during cryomodule acceptance testing is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK028  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT020 Modeling RHIC Spin Tilt as Lattice Imperfections proton, injection, HOM, lattice 1884
 
  • V.H. Ranjbar, E.C. Aschenauer, H. Huang, A. Marusic, F. Méot, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A tilt in the spin direction from the vertical has been observed for a number of years in the RHIC collider during store. This tilt has been extensively studied by scanning snake strengths, energies and orbital angles during the 2017 polarized proton run. Using a spin transport model, we attempt to model this spin tilt by fitting all the relevant data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT020  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT041 Strong-Strong Simulations of Coherent Beam-Beam Effects in the EIC electron, proton, luminosity, simulation 1942
 
  • J. Qiang
    LBNL, Berkeley, California, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo, C. Montag, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
 
  The high luminosity electron ion collider (EIC) will provide great opportunities in nuclear physics study and is under active design. The coherent effects due to the beam-beam interaction of two colliding beams can cause beam size blow-up and degrade the luminosity in the EIC. In this paper, we report on the study of coherent beam-beam effects in the EIC design using self-consistent strong-strong simulations. These simulations show the coherent dipole and quadrupole mode instabilities in the tune working point scan and bunch intensity scan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT041  
About • Received ※ 18 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT058 A Response Matrix Approach to Skew-Sextupole Correction in the LHC at Injection coupling, simulation, sextupole, injection 1987
 
  • E. Waagaard
    Uppsala University, Uppsala, Sweden
  • E.H. Maclean
    CERN, Meyrin, Switzerland
 
  To date, no dedicated attempt has been made to correct skew-sextupole resonances in the LHC at injection. Recently this topic has gained interest however, following the investigation for the emittance growth generation during the LHC energy ramp, due to third order islands. The LHC is equipped with skew-sextupole correctors in the experimental insertions (MCSSX), intended for local compensation at top energy, and with several families of skew sextupole magnets in the arcs (MSS), which are intended for chromatic coupling compensation at top energy but are not optimally placed for resonance compensation. Simulation studies were performed in MAD-X and PTC to assess whether the MSS and MCSSX correctors could be used to compensate skew-sextupole RDTs in the LHC at injection via a response matrix approach, based on measured values at the LHC BPMs. It was found that compensation was viable, but at the cost of significantly increased corrector strength compared to chromatic coupling compensation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT058  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT059 Corrections of Systematic Normal Decapole Field Errors in the HL-LHC Separation/Recombination Dipoles target, dynamic-aperture, simulation, dipole 1991
 
  • J. Dilly, M. Giovannozzi, R. Tomás García, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
Magnetic measurements revealed that the normal decapole (b5) errors of the recombination dipoles (D2) could have a systematic component of up to 11 units. Based on previous studies, it was predicted that the current corrections would not be able to compensate this, thereby leading to a degradation of the dynamic aperture by about 0.5 - 1 ’. On the other hand, the separation dipole D1 is expected to have a systematic b5 component of 6-7 units and its contribution to the resonance driving terms will partly compensate the effect of D2, due to the opposite field strength of the main component. Simulations were performed with the HL-LHC V1.4 lattice to test these concerns and to verify the compensation assumption. In addition, various normal decapole resonance driving terms were examined for correction, the results of which are presented in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT059  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT061 A Flexible Nonlinear Resonance Driving Term Based Correction Algorithm with Feed-Down optics, luminosity, dipole, insertion 1999
 
  • J. Dilly, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
The optics in the insertion regions of the LHC and its upgrade project the High Luminosity LHC are very sensitive to local magnetic errors, due to the extremely high beta-functions. In collision optics, the non-zero closed orbit in the same region leads to a "feed-down" of high-order errors to lower orders, causing additional effects detrimental to beam lifetime. An extension to the well-established method for correcting these errors by locally suppressing resonance driving terms has been undertaken, not only taking this feed-down into account, but also adding the possibility of utilizing it such that the powering of higher-order correctors will compensate for lower order errors. Existing correction schemes have also operated on the assumption of (anti-)symmetric beta-functions of the optics in the two rings. This assumption can fail for a multitude of reasons, such as inherently asymmetric optics and unevenly distributed errors. In this respect, an extension of this correction scheme has been developed, removing the need for symmetry by operating on the two separate optics of the beams simultaneously.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT061  
About • Received ※ 07 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT064 Simulations and Measurements of Luminosity at SuperKEKB simulation, luminosity, experiment, impedance 2011
 
  • D. Zhou, Y. Funakoshi, K. Ohmi, Y. Ohnishi
    KEK, Ibaraki, Japan
  • Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  The interplay of beam-beam interaction, machine imperfections, and beam coupling impedance makes it difficult to predict the luminosity performance of SuperKEKB. Since 2020, the crab waist scheme was introduced to SuperKEKB to suppress beam-beam resonances. The coherent beam-beam head-tail instability and beam-beam driven synchro-betatron resonances due to large crossing angle can drive horizontal blowup, which cannot be suppressed by crab waist. The longitudinal impedance modulates the synchrotron motion and therefore affects beam-beam instability. In this paper, we compare simulations and measurements of luminosity and discuss the challenges and direction toward developing a predictable luminosity simulation model for SuperKEKB.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT064  
About • Received ※ 13 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK007 Simulating Quasi-Integrable Optics with Space Charge in the IBEX Paul Trap octupole, lattice, space-charge, experiment 2040
 
  • J.A.D. Flowerdew
    University of Oxford, Oxford, United Kingdom
  • D.J. Kelliher, S. Machida, S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Royal Society
The intensity frontier has called for new initiatives in hadron accelerator design in order to accommodate space charge dominated beams. Octupoles are often used to damp beam instabilities caused by space charge, however the insertion of octupole magnets leads to a nonintegrable lattice which reduces the area of stable particle motion. One proposed solution is Quasi-Integrable optics (QIO), where the octupoles are inserted between sections of a specific lattice insertion called a T-insert. An octupole with a strength that scales as 1/beta3(s) is applied in the drift region, where the horizontal and vertical beta functions are equal, to create a time independent octupole field. This leads to a lattice with a time-independent Hamiltonian which is robust to small perturbations. IBEX is a Paul trap which allows the transverse dynamics of a collection of trapped particles to be studied, mimicking the propagation through multiple quadrupole lattice periods, whilst remaining stationary in the laboratory frame. In order to test QIO at the IBEX experiment, it has recently undergone an upgrade to allow for the creation of octupole fields. We present our design of the IBEX experiment upgrade along with simulation results of our proposed experiment to test QIO with space charge.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK007  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK011 High Intensity Studies in the CERN Proton Synchrotron Booster injection, operation, proton, ISOL 2056
 
  • F. Asvesta, S.C.P. Albright, F. Antoniou, H. Bartosik, C. Bracco, G.P. Di Giovanni, G. Rumolo, P.K. Skowroński, C. Zannini
    CERN, Meyrin, Switzerland
  • E. Renner
    TU Vienna, Wien, Austria
 
  After the successful implementation of the LHC Injectors Upgrade (LIU) project, studies were conducted in the CERN Proton Synchrotron Booster (PSB) in order to assess the intensity reach with the increased beam brightness. The studies focused on the high intensity beams delivered to the PSB users, both at 1.4 and 2 GeV. In addition, possible intensity limitations in view of the Physics Beyond Colliders (PBC) Study were investigated. To this end, various machine configurations were tested including different resonance compensation schemes and chromaticity settings in correlation with the longitudinal parameters. This paper summarizes the results obtained since the machine recommissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK011  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK021 Improvement of Spill Quality for Slowly Extracted Ions at GSI-SIS18 via Transverse Emittance Exchange emittance, extraction, coupling, synchrotron 2093
 
  • J. Yang, P. Forck, T. Giacomini, P.J. Niedermayer, R. Singh, S. Sorge
    GSI, Darmstadt, Germany
 
  The temporal beam stabilization of slowly extracted beams from the synchrotron within several seconds is crucial for fulfilling the demands of fix-target experiments. Results from previous investigations suggest that the transit time spread can be increased by reducing the beam emittance in the plane of extraction. Increased transit time spread is known to cut-off high frequency noise introduced by magnet power supplies. A pilot experiment was performed at SIS18 at GSI to introduce transverse emittance exchange, resulting in the circulating beam’s smaller horizontal beam size. The improvement of the spillμstructure is reported in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK021  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK022 Horizontal Beam Response at Extraction Conditions at the Heidelberg Ion-Beam Therapy Centre extraction, simulation, sextupole, pick-up 2096
 
  • E.C. Cortés García, E. Feldmeier, Th. Haberer
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion-Beam Therapy Centre’s synchrotron makes use of the sextupole driven RF-KO method near the third-order resonance in order to slowly extract the beam that is delivered to the patients. The horizontal beam response of a coasting beam was studied experimentally and with simulations at extraction conditions in order to deduce regions of interest for an optimal excitation signal spectrum. Two narrow frequency regions were found were the beam reacts coherently. With these information an RF signal was proposed for the resonant slow extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK022  
About • Received ※ 17 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK028 Implementation of RF Channeling at the CERN PS for Spill Quality Improvements flattop, cavity, extraction, simulation 2114
 
  • P.A. Arrutia Sota, H. Damerau, M.A. Fraser, M. Vadai, F.M. Velotti
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
 
  Resonant slow extraction from synchrotrons aims at providing constant intensity spills over timescales much longer than the revolution period of the machine. However, the extracted intensity is undesirably modulated by noise on the machine’s power converters with a frequency range of between 50 Hz and a few kHz. The impact of power converter noise can be suppressed by exploiting a Radio Frequency (RF) technique known as empty bucket channelling, which increases the speed at which particles cross the tune resonance boundary. In this contribution the implementation of empty bucket channelling in the CERN Proton Synchrotron (PS) is described via simulation and measurement. The technique was tested with both a resonant RF cavity and an inductive Finemet cavity, which can produce non-sinusoidal waveforms, to significantly reduce the low frequency noise observed on the extracted spill.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK028  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK040 Spin-Tracking Simulations in a COSY Model Using Bmad simulation, dipole, polarization, experiment 2158
 
  • M. Vitz
    FZJ, Jülich, Germany
 
  The matter-antimatter asymmetry might be understood by investigating the EDM (Electric Dipole Moment) of elementary charged particles. A permanent EDM of a subatomic particle violates time reversal and parity symmetry at the same time and would be, with the currently achievable experimental accuracy, an indication for further CP violation than established in the Standard Model. The JEDI-Collaboration (Jülich Electric Dipole moment Investigations) in Jülich has performed a direct EDM measurement for deuterons with the so called precurser experiments at the storage ring COSY (COoler SYnchrotron). In order to understand the measured data and to disentangle an EDM signal from systematic effects, spin tracking simulations in an accurate simulation model of COSY are needed. Therefore a model of COSY was implemented using the software library Bmad. Systematic effects were considered by including element misalignments, effective dipole shortening and steerer kicks. These effects rotate the invariant spin axis additional to the EDM and have to be analyzed and understood. The most recent spin tracking results as well as the methods to find the invariant spin axis will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK040  
About • Received ※ 02 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK051 Beam Induced Power Loss Estimation of a Movable Synchrotron Light Extraction Mirror for the LHC extraction, impedance, synchrotron, coupling 2173
 
  • M. Wendt, W. Andreazza, E. Bravin, F. Guillot-Vignot
    CERN, Meyrin, Switzerland
 
  Beam instruments based on synchrotron light are an important part of the beam monitoring diagnostics suite in the Large Hadron Collider (LHC) at CERN. In frame of the high luminosity upgrade (HL-LHC) additional synchrotron light diagnostics are demanded, too many to be covered by the present Beam Synchrotron-light Radiation Telescope (BSRT), which utilizes a fixed light extraction mirror. Therefore, an additional synchrotron light diagnostics setup is under development, now with a movable mirror to extract the synchrotron light emitted solely by a superconducting LHC dipole magnet. With higher bunch intensities anticipated in the HL-LHC, the beam induced power losses, and therefore local heat dissipation, play a critical role in the design of the extraction mirror. This paper summarizes the estimation of the bunched-beam induced power losses based on numerical simulations and RF measurements on a prototype light extraction mirror.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK051  
About • Received ※ 06 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS006 Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA impedance, bunching, radiation, simulation 2241
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, P. Schreiber, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC. S. M. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" (KSETA).
Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS006  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS019 Beam-Beam Resonance Widths in the HL-LHC, and Reduction by Phasing of Interaction Points interaction-region, betatron, lattice, luminosity 2280
 
  • Y.L. Gao, S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  Beam-beam interactions are a limiting factor in the planned high luminosity (HL) upgrade to the Large Hadron Collider (HL-LHC). Over the two main interaction regions of the LHC, a particle experiences two head-on and over a hundred long-range beam-beam interactions which drive betatron resonances in the system. Each resonance line in the space of horizontal and vertical tunes has a finite (non-zero) lock-on width. If the particles tunes fall within this width, they will eventually lock on to the resonance and be driven to large amplitude. We show that it is possible to reduce the resonances widths of a given order by using specific values of the phase advance between interaction points. This paper presents the derivation of resonance width for the weak-strong beam-beam effect, as an extension of A.Chaos width formulae for magnetic sextupoles. (A Lie-algebraic approach is used to combine the effect of the individual beam-beam impulses.) The paper then studies the lock-on width arising from two interaction regions containing 140 beam-beam impulses, and shows the cancellation of specific resonances by relative phasing of interaction points in the HL-LHC lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS019  
About • Received ※ 27 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS056 Spin Matching and Monte-Carlo Simulation of Radiative Spin Depolarization in e+e Storage Rings with Bmad polarization, storage-ring, electron, lattice 2383
 
  • O. Beznosov, J.A. Ellison, K.A. Heinemann
    UNM-MATH, Albuquerque, New Mexico, USA
  • D.P. Barber
    DESY, Hamburg, Germany
  • J.A. Crittenden, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Numbers DE-SC0018008 and DE-SC0018370.
The Bmad/Tao software toolkit has been extended to estimate the rate of radiative spin depolarization in e+/e storage rings. First estimates are made using the SLIM algorithm of linearized spin-orbit motion. The extension implements the effects on s-o motion of stochastic photon emission using a Monte-Carlo tracking algorithm. Spins are tracked in 3-D along particle trajectories with the aid of Taylor expansions of quaternions provided by PTC*. The efficiency of long-term tracking is guarantied by the use of a sectioning technique that was exploited in previous-generation software**. Sectioning is the construction of the deterministic s-o maps for sections between the dipoles during the initialization phase. Maps can be reused during the tracking. In a simulation for a realistic storage ring, the computational cost of initial map construction is amortized by the multi-turn tracking computational cost. The use of 1st-order terms in the quaternion expansions to construct the s-o coupling matrices in the matrices of the SLIM algorithm. These matrices are then available for an extension of the optimization facilities in Bmad to minimize depolarizing effects by spin matching.
*SLICKTRACK and SITROS
** Polymorphic Tracking Code by Etienne Forest
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS056  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST004 EIC’s Rapid Cycling Synchrotron Spin Tracking Update polarization, emittance, lattice, electron 2439
 
  • V.H. Ranjbar, H. Lovelace III, F. Méot
    BNL, Upton, New York, USA
  • F. Lin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron Ion Collider (EIC) to be built will collide polarized electrons and ions up to 140 GeV center of mass with a time averaged polarization of 70% and luminosity up to 1034 cm-2 s-1. The EIC’s Rapid Cycling Synchrotron (RCS) will accelerate 2 polarized electrons bunches from 400 MeV to energies of 5, 10 and 18 GeV and inject them into the EIC’s Electron Storage Ring. The design of the RCS has progressed to accommodate a larger magnet free section for the detectors and to meet the space requirements of the RHIC tunnel. We present progress on full 6D spin tracking studies of the RCS with the updated lattice using the Zgoubi code to include magnet misalignments, field errors and corrections as well as radiative effects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST004  
About • Received ※ 07 June 2022 — Revised ※ 22 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT003 A First attempt at implementing TRIBs in BESSY III’s Design Lattice lattice, sextupole, quadrupole, photon 2560
 
  • M. Arlandoo, P. Goslawski, M. Titze
    HZB, Berlin, Germany
 
  At HZB’s BESSY II and PTB’s Metrology Light Source (MLS), resonances and islands in transverse phase space are exploited in a special operation mode usually referred to as Transverse Resonance Island Buckets (TRIBs). This mode provides a second stable orbit well separated from the main orbit and one of its applications in photon science is the ultra-fast switching of the helicity of circularly polarized light pulses. In the context of the conceptual design study of BESSY III, it is under investigation how this special optics mode can be implemented in an MBA structure and how it will impact the photon source parameters. In this paper we present a preliminary attempt at implementing TRIBs in BESSY III’s design lattice, a multi-bend achromat, by breaking the symmetry of the lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT017 Orbit Stability Studies for the Diamond-II Storage Ring electron, power-supply, storage-ring, cavity 2602
 
  • I.P.S. Martin, C.A. Abraham, D. Crivelli, H. Ghasem, B. Nicholson, T. Olsson, P. Sanchez Navarro
    DLS, Oxfordshire, United Kingdom
 
  The photon-beam positional stability relative to the beam size is a key performance parameter for storage ring light sources. The natural emittance of the Diamond-II ring will be lowered by a factor 16.7 compared to the existing ring, so the absolute stability requirement for the electron beam must reduce accordingly. In addition, advances in detector speed and resolution mean the tolerances are tighter compared to previous generations of storage rings, with a target of 3 % of beam size up to 1 kHz having been adopted for Diamond-II. In this paper we present studies of how the anticipated ground vibrations, girder motion and power supply ripple will affect the electron beam stability as a function of frequency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT017  
About • Received ※ 08 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT035 A Second Generation Light Source Aiming at High Power on the Giant Dipole Resonance insertion, dipole, cavity, photon 2661
 
  • X. Buffat, L.L. Cuanillon, E.N. Kneubuehler
    CERN, Meyrin, Switzerland
 
  We propose an accelerator concept which could enable nuclear waste transmutation and energy amplification using a second generation light source rather than a high power proton beam. The main parameters of the ring and insertion devices are estimated, targeting a photon beam power of 1 GW with a spectrum that maximizes the potential for nuclear reactions via the Giant Dipole Resonance. The synergies with technologies developed for high energy physics, in particular within the Future Circular Collider study (FCC), are highlighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT035  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS019 Slow Extraction Modelling for NIMMS Hadron Therapy Synchrotrons extraction, emittance, synchrotron, betatron 2988
 
  • R.L. Taylor
    CERN, Meyrin, Switzerland
  • E. Benedetto, M. Sapinski
    SEEIIST, Geneva, Switzerland
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Next Ion Medical Machine Study (NIMMS) is an umbrella R&D programme for CERN accelerator technologies targeting advanced accelerator options for proton and light ion therapy. In collaboration with the European program HITRIplus, one area of study is slow extraction which is required to deliver a uniform beam spill for radiotherapy treatment. Several techniques use the third-order resonance to extract hadrons; these include betatron core driven extraction and radiofrequency knock-out. Flexible simulations tools using these techniques were prepared and initially benchmarked with results from the literature that used the Proton-Ion Medical Machine Study (PIMMS) design. The limits of the current PIMMS design were then pushed to evaluate its compatibility to deliver >10x higher intensity ion beams, and using increased extraction rates.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS019  
About • Received ※ 19 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)