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Abstract

Normal form analysis around a stable fixed point is a
well-established tool in accelerator physics and has proven
to be invaluable for an understanding of non-linear beam
dynamics.

In this work we present progress in developing a mod-
ular Python framework to analyze some of the non-linear
aspects of a storage ring, by directly operating with the given
Hamiltonians.

Hereby we have implemented Birkhoff’s normal form and
Magnus expansion. This leads to a flexible framework to
perform calculations to high order and, moreover, to relax
the constraint of stability to also include certain unstable
fixed points in the analysis.

INTRODUCTION

During the course of last year, two promising candidates
for a successor of the third-generation light source BESSY2
have been singled out by the HZB machine development
group [1, 2].

To study and answer questions concerning their dynamic
aperture, Touschek-lifetime, IBS1, error-response, chro-
maticity, momentum compaction factors and a possible fu-
ture TRIB2-like operation mode, it soon became clear that
there is a need for a deeper understanding of the non-linear
aspects of these candidates.

Programs typically used for such tasks at HZB are OPA
[4], Elegant [5, 6] and MAD-X/PTC [7,8].

While these codes have the advantage of being developed
over a relatively long period of time, and therefore can be con-
sidered as fairly robust, they also share some disadvantages
concerning their flexibility and I/O formats. Often there
is demand to access their internal objects from a modern,
more interactive environment, which is usually not possible
or only with great effort. These difficulties are well known
in the community, and spurred the development of various
projects as a result [9–11].

Here we have chosen a modular strategy in form of Python
packages, each dedicated to specific tasks. Hence, the project
takes full advantage of the Python syntax, while working
along the custom user scripts (and the large pool of Python
community scripts). Consequently, there is natural access
to all its internal objects, leading to vast flexibility.

Work on the project commenced in October 2021 with
the main focus on Hamilton mechanics. In this regard there

∗ Work supported by German Bundesministerium für Bildung und
Forschung, Land Berlin, and grants of Helmholtz Association.
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1 Intra-beam scattering.
2 Transverse Resonance Island Bucket, see e.g. Ref. [3].

are currently three packages under active development and
maintenance [12–14].

CONCEPTS

Magnus Expansion

Consider the one-turn map M of a beam line consisting
of � elements, each of which can be written in terms of an
�-indepdendent Hamiltonian H� and having length ��

3:

M = exp(−�� : H� :) · · · exp(−�1 : H1 :). (1)

It is well known that already for two of these elements, the
combination #(�, �) =: � with exp(�) = exp(�) exp(�)
rapidly becomes complicated due to the amount of nested
commutators involved.

However, for a qualitative analysis, already the lowest
order4 terms in Eq. (1) can be worthwhile to study and inves-
tigate, as shown in e.g. [15]. Moreover, it is possible to per-
form normal form analysis on such an effective Hamiltonian.
For these reasons we have turned our attention to the Magnus
expansion, which includes the Hamiltonian #�

�=1
: H� : as a

special case, if considering hard-edge elements.5

More recently it has been outlined in [18, 19] that the
Magnus expansion can formally be computed in terms of
binary rooted trees. Specifically, if � = exp(: Ω(�) :) is
a solution to the equation ¤� = : H :� , � (0) = 1,6 with
�-dependent Hamiltonian H , then [19, 20]

Ω(�) =
∞︁

�=0

︁

�∈T�
�(�)

∫ �

0

H� (�1)��1, (2)

H� (�) =
{∫ �

0

H�1
(�2)��2,H�2

(�)
}

, (3)

� = (�1, �2) denotes a binary tree with leaves �1 and �2 and

T� := {(�1, �2); �1 ∈ T�1
∧ �2 ∈ T�2

: �1 + �2 = � − 1} (4)

denotes a set of trees, called forest, containing trees � in-
volving exactly � nested commutators of H with � ∈ T0 ⇔
H� ≡ H . The coefficients �(�) are given by

�(�) = ��

�!

�
∏

�=0

�(��), (5)

3 Without loss of generality we consider the independent variable � to agree
with the position variable along the ring; �-dependent Hamiltonians can
be modeled in a similar fashion by a suitable phase space extension.

4 ’Order’ is to be understood here as the number of involved operators
within a nested commutator expression.

5 Note that #(�, #(�, � ) ) = #(#(�, �) , � ) , so dropping the brackets in
the #-expression makes sense.

6 Including the minus sign inside H for brevity here.
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if the tree � is written in the form � = (�0, (�1, ..., (�� ,H)...)
(which is always possible). The quantities �� denote the
Bernoulli numbers.

Moving the integrations out of all brackets in Eq. (2) leads
to an integral over an �-dimensional simplex of specific
shape [19]. In the hard-edge case of our interest, this integral
has conveniently been implemented in Python, since it is
known exactly.

Normal Form

It is well known that a linear symplectic map � , joined
to the identity by a continuous one-parameter group of sym-
plectomorphisms, can be written in the form � = exp(��),
where � is a symmetric map and � the standard symplec-
tic matrix (see e.g. [21]). The map � may emerge as the
derivative of the one-turn map M in Eq. (1) at a stable fix
point. Then � can be transformed into a suitable normal
form, corresponding to the first step in normalizing M itself
(see e.g. [22–24] and references therein).

However, from a computational point of view (and also
conceptually), evaluating lengthy products of exponentials
and searching for fix points may not always be desired. We
therefore departed from that road.

Instead, let us consider the case of a single Hamiltonian
H , which may represent either a specific element, the ’effec-
tive’ Hamiltonian of an entire beam line by using a Magnus
expansion7, or has been produced by some other means. We
shall make two assumptions:

1. There is no gradient of H at the point of interest, i.e.
we have a fix point.

2. At the point of interest it must hold that �� is diago-
nalizable, where � := Hess(H) denotes the Hessian
of H .

Under these assumptions we can now proceed as follows:8

1. Diagonalize �� and bring its � pairs of eigenvalues
±� � ∈ C to block-anti-diagonal form, so that we can
write �� = ���−1 for some non-singular � ∈ C2�×2�

and

� :=

(

0 Λ

−Λ 0

)

, (6a)

Λ := diag(��1, ..., ��� , 0, ..., 0). (6b)

2. Define � := (�−1�−�� ��−1)1/2� , where the matrix
square root must be polynomial.9 Then � is sym-
plectic with �� = ���−1. Since � = �� with
� := diag(Λ,Λ), we have � = ����� .

7 Within its convergence radius.
8 The details of how to arrive at these conclusions will be subject to a

forthcoming publication [25].
9 This means that there must exist a function �, written in form of sum-

mations and multiplications, so that �1/2
= � (�) holds, where � is the

matrix in question. This is always possible in the above context.

Having made this preparatory step, we then proceed to ob-
tain higher-order normal form [25] to obtain the phase space
distortion (or resonance driving) terms at our point of inter-
est.

An interesting feature of this approach is that it will enable
us to include cases where� is indefinite, meaning that the fix
point can be unstable. Convergence of the normal form series
at such points is guaranteed [31]. In [32] a two-dimensional
example has already been studied.

IMPLEMENTATION STATUS

As mentioned in the introduction, the project currently
consists of three Python packages with various purposes.

The first package, njet,10 is a relatively small package
intended to run forward-mode automatic differentiation (AD)
on elementary functions11 by operator overloading. njet is
already in a state where only minor changes are supposed
to happen and comes along an online documentation which
cover its main functionality [12].

The second package, lieops,12 is centered around im-
plementing generic Lie operators of the form exp(: � :),
where � is modeled as a polynomial in � variables. The
main reason to restrict ourselves to polynomials is that in
the normal form analysis only polynomial terms become
relevant. Moreover, the description of the Hamiltonian of a
combined-function magnet (CFM), which will be an impor-
tant application of lieops, is already given conveniently
in terms of a (complex valued) polynomial up to a desired
order [26].

The package contains an implementation of the Magnus
expansion as described above, and its performance has so
far been tested to work well with around 1500 elements.
This number is usually found for a realistic machine design
like BESSY3. Here the script took around 10 seconds to
compute the expansion in 6D to order 5. In 2D the expansion
took about 16 seconds for order 8.

For an application (and test) of the Magnus expansion,
the Baker-Campbell-Hausdorff (BCH) equation has been
implemented and checked against a tool [27] specialized for
calculating the BCH series to high order.

In the case of a Fourier decomposition, which can be
more suitable for insertion devices or fringing fields, there
are routines to determine the respective integrands in Eq. (2)
in Fourier space and further work in this direction is planned.

Normal form for a given Hamiltonian has been imple-
mented in lieops, which is fairly quick even for large order
(∼ 8), taking just a fraction of a second.

Work is ongoing to provide symplectic integrators in
lieops as a faster alternative to its default ’brute force’
method. Currently, two integrators have been added and are
being benchmarked [28, 29].

10Meaning ’�-jet’; related closely to the concept in differential geometry.
11Here we mean: Given by algebraic expressions or compositions of func-

tions whose �-th derivatives are known exactly.
12From ’Lie operations’.
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Overall, lieops is currently in a more active develop-
ment stage, with detailed tests ongoing. A documentation is
planned in the near future.

This status also holds for the third package, accphys, in-
tended to have a close tie to accelerator physics. Here, there
are tools to build a lattice from scratch or from file,13 com-
pute the detuning terms by utilizing lieops and perform
multi-turn tracking through a beam line.

Upon other lattice elements, this package also includes the
CFM potentials discussed in [26], which subsequently serve
as a model to the conventional multipole and dipole elements.
Notably, concerning these potentials, there is the possibility
to expand the square root in the Hamiltonian to any desired
order. Furthermore, the user can project/restrict the 6D-
Hamiltonians to work in (a) specific plane(s) of interest and
may select a kick Hamiltonian14 instead of the full (thick)
version.

EXAMPLE

To give a first glimpse of the capability of the outlined
approach, we consider a one-dimensional toy model, given
by a Hamiltonian of the following form:

H(�, �) = �2 + 2.33�2 + �3/3. (7)

This Hamiltonian originated by a slight modification to the
case of a harmonic oscillator, together with a thin sextupole,
to obtain two fix points with desired properties. Hereby a
stable fix point exists at the origin �0 := (0, 0), while an
unstable fix point is located at �1 := (−2, 0). Due to the
technique outlined before, we can then reconstruct the local
phase space around the points �0 and �1.

While we obtain elliptic shapes around the stable point,
the unstable point will yield hyperboloids, as depicted in
Fig. 1.

We remark that the eigenvalues of ��, where � denotes
the Hesse-matrix of H at � � ( � = 1, 2), � = diag(ℎ11, ℎ22),
are ±

√
−ℎ11ℎ22, so that in the stable case they are purely

imaginary, while in the unstable case they are purely real.
This propagates to the respective normal form by Eqs. (6a)
and (6b) and, further, to the action �1 so that15

�1 =
−�
2

︁

−ℎ11ℎ22

(

�2

ℎ22

+ �2

ℎ11

)

, (8)

leading to a purely imaginary action in the indefinite case.
This, however, is of no concern, because we get respective
alternating imaginary and real detuning coefficients in the
various orders of the normal form: The normalized Hamilto-
nian must be real overall. In particular, Eq. (8) will receive
an imaginary tune as its first-order coefficient in the indefi-
nite case.
13Currently the formats supported by the latticeadaptor package [30]

are available, which are MAD-X, Elegant and Tracy.
14A ’kick’ Hamiltonian will result in a (symplectic) map which does not

change the transverse coordinates.
15There is an ambiguity in the sign of �1 in this approach. In Eq. (8)we have

chosen one to reach agreement with the classical action in the definite
case.

Figure 1: Normal form ’reconstruction’ of the phase space
of the Hamiltonian in Eq. (7) around the stable point �0

(top) and the unstable point �1 (bottom). Dashed/solid lines
indicate negative/positive regions relative to H(�1). The
blue lines show contours of the normal form approximation
towards the exact phase space (black), here for order 3, while
the orange points show a tracking example by using the
respective normal form maps.

From Eq. (8) it is then visible how the motion near the
unstable fix point is indeed bounded to hyperboloids.

CONCLUSION

With the three packages njet, lieops and accphys we
have initiated a project with the goal to address important
questions related to BESSY3 machine design studies.

Conceptually we have chosen to work primarily with indi-
vidual Hamiltonians (whatever their origin might be). This
enables us to construct normal form maps for a variety of
fix points, including hyperbolic ones.

From a theoretical point of view there are investigations
ongoing whether a normal form can still be constructed if
one lessens some of the assumptions we have made.
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