Keyword: bunching
Paper Title Other Keywords Page
TUPOPT018 Fermi 2.0 Future Upgrade Strategy FEL, electron, simulation, laser 1041
 
  • L. Giannessi, E. Allaria, L. Badano, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, M.B. Danailov, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, W.M. Fawley, M. Ferianis, G. Gaio, F. Gelmetti, G. Kurdi, M. Lonza, M. Malvestuto, M. Manfredda, C. Masciovecchio, I. Nikolov, G. Penco, K.C. Prince, E. Principi, P. Rebernik Ribič, C. Scafuri, N. Shafqat, P. Sigalotti, A. Simoncig, F. Sottocorona, S. Spampinati, C. Spezzani, L. Sturari, M. Trovò, M. Veronese, R. Visintini, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Coreno
    CNR-ISM, Trieste, Italy
  • G. Penn
    LBNL, Berkeley, California, USA
  • G. Perosa
    Università degli Studi di Trieste, Trieste, Italy
  • T. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
 
  FERMI is studying a series of developments to keep the facility in a world-leading position on the base of the requests coming from the user community, the Scientific Advisory Council and the Machine Advisory Committee. The ultimate goal of the development plan consists in doubling the photon energy range and reducing the pulse duration below the characteristic lifetime of the atomic core levels located in the energy range of the source. One of the most promising approaches is the echo-enabled harmonic generation (EEHG) scheme, relying on two external lasers to precisely control the spectro-temporal properties of the FEL pulse. The implementation of EEHG in the double-stage harmonic cascade presently in use on FEL-2, would allow harmonics as high as 120 enabling to generate coherent pulses down to 2 nm starting from UV lasers. An upgrade of FERMI aimed at reaching the oxygen K-edge requires a profound modification of the FEL configurations and of the main components of the machine, including the linac and the undulator lines. The main aspects of the upgrade strategy will be discussed in this presentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT018  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS012 Investigation of Spectro-Temporal Properties of CHG Radiation at DELTA laser, electron, radiation, storage-ring 1423
 
  • A. Radha Krishnan, B. Büsing, A. Held, H. Kaiser, S. Khan, C. Mai, Z. Usfoor, V. Vijayan
    DELTA, Dortmund, Germany
 
  Funding: Funded by DFG (INST 212/236-1 FUGG), BMBF (05K16PEA, 05K19PEB), and by the federal state NRW.
At the synchrotron light source DELTA operated by the TU Dortmund University, the short-pulse facility employs the seeding scheme coherent harmonic generation (CHG) and provides ultrashort pulses in the vacuum ultraviolet and terahertz regime. Here, the interaction of laser pulses with the stored electron bunches results in a modulation of the longitudinal electron density which gives rise to coherent emission at harmonics of the laser wavelength. The spectral and temporal properties of such coherent short pulses can be manipulated by the seed laser properties and chicane strength. CHG spectra at several harmonics of the 800 nm seed laser were recorded using an image-intensified CCD (iCCD) camera and a newly installed XUV spectrometer. Numerical simulations to calculate the spectral phase properties of the seed laser from the observed spectra were carried out.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS012  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS005 Simulations of the Micro-Bunching Instability for SOLEIL and KARA Using Two Different VFP Solver Codes synchrotron, simulation, radiation, storage-ring 2237
 
  • M. Brosi, A.-S. Müller, P. Schreiber
    KIT, Karlsruhe, Germany
  • S. Bielawski, C. Evain, E. Roussel, C. Szwaj
    PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
 
  Funding: M.B. acknowledges the funding by the Helmholtz Association in the frame of the Helmholtz doctoral prize. The project has been supported by the ANR-DFG ULTRASYNC project. PhLAM acknowledges support from the CPER Photonics for Society, and the CEMPI LABEX.
The longitudinal dynamics of a bunched electron beam is an important aspect in the study of existing and the development of new electron storage rings. The dynamics depend on different beam parameters as well as on the interaction of the beam with its surroundings. A well established method for calculating the resulting dynamics is to numerically solve the Vlasov-Fokker-Planck equation. Depending on the chosen parameters and the considered wakefields and impedances, different effects can be studied. One common application is the investigation of the longitudinal micro-wave and micro-bunching instabilities. The latter occurs for short electron bunches due to self-interaction with their own emitted coherent synchrotron radiation (CSR). In this contribution, two different VFP solvers are used to simulate the longitudinal dynamics with a focus on the micro-bunching instability at the Soleil synchrotron and the KIT storage ring KARA (Karlsruhe Research Accelerator).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS005  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS006 Simulation of the Effect of Corrugated Structures on the Longitudinal Beam Dynamics at KARA impedance, resonance, radiation, simulation 2241
 
  • S. Maier, M. Brosi, A. Mochihashi, A.-S. Müller, M.J. Nasse, P. Schreiber, M. Schwarz
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the DFG project 431704792 in the ANR-DFG collaboration project ULTRASYNC. S. M. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" (KSETA).
Two parallel corrugated plates will be installed at the KIT storage ring KARA (KArlsruhe Research Accelerator). This impedance manipulation structure will be used to study and eventually control the beam dynamics and the emitted coherent synchrotron radiation (CSR). In this contribution, we present the results obtained with the Vlasov-Fokker-Planck solver Inovesa showing the impedance impact of different corrugated structures on the bunch and its emitted CSR power.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS006  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS037 Microbunching Studies for the FLASH2020+ Upgrade Using a Semi-Lagrangian Vlasov Solver simulation, laser, FEL, electron 2334
 
  • Ph. Amstutz, M. Vogt
    DESY, Hamburg, Germany
 
  Precise understanding of the microbunching instability is mandatory for the successful implementation of a compression strategy for advanced FEL operation modes such as the EEHG seeding scheme, which a key ingredient of the FLASH2020+ upgrade project. Simulating these effects using particle-tracking codes can be quite computationally intensive as an increasingly large number of particles is needed to adequately capture the dynamics occurring at small length scales and reduce artifacts from numerical shot-noise. For design studies as well as dedicated analysis of the microbunching instability semi-Lagrangian codes can have desirable advantages over particle-tracking codes, in particular due to their inherently reduced noise levels. However, rectangular high-resolution grids easily become computationally expensive. To this end we developed SelaV1D, a one dimensional semi-Lagrangian Vlasov solver, which employs tree-based domain decomposition to allow for the simulation of entire exotic phase-space densities as they occur at FELs. In this contribution we present results of microbunching studies conducted for the FLASH2020+ upgrade using SelaV1D.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS037  
About • Received ※ 06 June 2022 — Revised ※ 29 June 2022 — Accepted ※ 01 July 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)