Keyword: feedback
Paper Title Other Keywords Page
MOPV024 vscode-epics, a VSCode Module to Enlighten Your EPICS Code EPICS, GUI, database, HOM 179
 
  • V. Nadot, A. Gaget, F. Gohier, F. Gougnaud, P. Lotrus, S. Tzvetkov
    CEA-IRFU, Gif-sur-Yvette, France
 
  vscode-epics is a Visual Studio Code module developed by CEA Irfu that aims to enlight your EPICS code. This module makes developer life easier, improves code quality and helps standardizing EPICS code. It provides syntax highlighting, snippets and header template for EPICS file and provides snippets for WeTest*. This VSCode module is based on Visual Studio Code language Extension and it uses basic JSON files that make feature addition easy. The number of downloads increases version after version and the different feedback motivates us to strongly maintain it for the EPICS community. Since 2019, some laboratories of the EPICS community have participated in the improvement of the module and it seems to have a nice future (linter, snippet improvements, specific language support, etc.). The module is available on Visual Studio Code marketplace** and on EPICS extension GitHub***. CEA Irfu is open to bug notifications, enhancement suggestions and merge requests to continuously improve vscode-epics.
* https://github.com/epics-extensions/WeTest
** https://marketplace.visualstudio.com/items?itemName=nsd.vscode-epics
*** https://github.com/epics-extensions/vscode-epics
 
poster icon Poster MOPV024 [0.508 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV024  
About • Received ※ 10 October 2021       Accepted ※ 04 November 2021       Issue date ※ 26 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV002 Motion Control Improvements for the Kirkpatrick-Baez Mirror System for Sirius/LNLS EMA Beamline controls, operation, interface, EPICS 362
 
  • G.N. Kontogiorgos, M.A.L. Moraes, C.S.B.N. Roque
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The Kirkpatrick-Baez (KB) mirror system is composed of a vertical focusing mirror (VFM) and a horizontal fo-cusing mirror. Both concave mirrors focus the X-ray beam by reflecting it at small grazing angles. The relocation of this system from UVX XDS beamline to Sirius EMA beamline facilitated a full revision of the motion control system, whose controller was migrated to Omron Delta Tau Power Brick LV. The beam focus is controlled by bending the mirrors through camshaft mechanisms cou-pled to low current Faulhaber motors. Although the am-plifier is designed for higher currents, controller settings allowed the use of lower currents. Another improvement made is the ability to drive both bender motors in gantry mode and still control the lag between them. Each bender has a capacitive sensor to monitor the position of the center of the mirror, which is read by the analog input of the controller and made available by EPICS [1]. The VFM is supported by a tripod and a new kinematics was devel-oped to reference the center of the mirror as the point of control. This paper presents the implementation of the new motion control KB system and its results at Sirius EMA beamline.
 
poster icon Poster TUPV002 [1.167 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV002  
About • Received ※ 09 October 2021       Revised ※ 18 October 2021       Accepted ※ 20 November 2021       Issue date ※ 30 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV003 The Control System of the Four-Bounce Crystal Monochromators for SIRIUS/LNLS Beamlines controls, operation, synchrotron, alignment 365
 
  • L. Martins dos Santos, P.D. Aranha, L.M. Kofukuda, G.N. Kontogiorgos, M.A.L. Moraes, J.H. Řežende, M. Saveri Silva, H.C.N. Tolentino
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
CARNAÚBA (Coherent X-ray Nanoprobe) and CATERETÊ (Coherent and Time Resolved Scattering) are the longest beamlines in Sirius - the 4th generation light source at the Brazilian Synchrotron Light Laboratory (LNLS). They comprise Four-Bounce Crystal Monochromators (4CM) for energy selection with strict stability and performance requirements. The motion control architecture implemented for this class of instruments was based on Omron Delta Tau Power Brick LV, controller with PWM amplifier. The 4CM was in-house designed and consists of two channel-cut silicon crystals whose angular position is given by two direct-drive actuators. A linear actuator mounted between the crystals moves a diagnostic device and a mask used to obstruct spurious diffractions and reflections. The system is assembled in an ultra-high vacuum (UHV) chamber onto a motorized granite bench that permits the alignment and the operation with pink-beam. This work details the motion control approach for axes coordination and depicts how the implemented methods led to the achievement of the desired stability, considering the impact of current control, in addition to benchmarking with manufacturer solution.
 
poster icon Poster TUPV003 [1.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV003  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 21 December 2021       Issue date ※ 30 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV007 Motorized Regulation Systems for the SARAF Project controls, PLC, cavity, cryomodule 387
 
  • T.J. Joannem, F. Gohier, F. Gougnaud, P. Lotrus
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Darde
    CEA, DES-ISAS-DM2S, Université Paris-Saclay, Gif-sur-Yvette, France
  • P. Guiho, A. Roger, N. Solenne
    CEA-DRF-IRFU, France
 
  CEA is in charge of the tuning regulation systems for the SARAF-Linac project. These tuning systems will be used with LLRF to regulate the 3 Rebuncher cavities and the HWR cavities of the 4 cryomodules. These systems were already tested on the Rebuncher and Equipped Cavity Test stands to test respectively the warm and cold tunings. This paper describes the hardware and software architectures. Both tuning systems are based on Siemens PLC and EPICS-PLC communication. Ambiant temperature technology is based on SIEMENS motor controller solution whereas the cold one combines Phytron and PhyMOTION solutions.  
poster icon Poster TUPV007 [0.892 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV007  
About • Received ※ 08 October 2021       Revised ※ 22 October 2021       Accepted ※ 05 February 2022       Issue date ※ 10 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV009 OpenCMW - A Modular Open Common Middle-Ware Library for Equipment- and Beam-Based Control Systems at FAIR controls, software, interface, experiment 392
 
  • R.J. Steinhagen, H. Bräuning, D.S. Day, A. Krimm, T. Milosic, D. Ondreka, A. Schwinn
    GSI, Darmstadt, Germany
 
  OpenCMW is an open-source modular event-driven micro- and middle-ware library for equipment- and beam-based monitoring as well as feedback control systems for the FAIR Accelerator Facility. Based on modern C++20 and Java concepts, it provides common communication protocols, interfaces to data visualisation and processing tools that aid engineers and physicists at FAIR in writing functional high-level monitoring and (semi-)automated feedback applications. The focus is put on minimising the required boiler-plate code, programming expertise, common error sources, and significantly lowering the entry-threshold that is required with the framework. OpenCMW takes care of most of the communication, data-serialisation, data-aggregation, settings management, Role-Based-Access-Control (RBAC), and other tedious but necessary control system integrations while still being open to expert-level modifications, extensions or improvements.  
poster icon Poster TUPV009 [1.376 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV009  
About • Received ※ 08 October 2021       Accepted ※ 22 December 2021       Issue date ※ 21 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAL03 The Status of Fast Obit Feedback System of HEPS power-supply, timing, hardware, controls 540
 
  • P. Zhu, Y.C. He, D.P. Jin, L. Zeng, Y.L. Zhang
    IHEP, Beijing, People’s Republic of China
  • D.Y. Wang
    DNSC, Dongguan, People’s Republic of China
  • L. Wang, X. Wu, Z.X. Xie, K. Xue
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  In order to further meet the needs of major national strategies and basic scientific research, High Energy Photon Source (HEPS) will be a high-performance fourth-generation synchrotron radiation source in Beijing, which will build more than 90 high-performance beamline stations. In order to ensure the high-performance operation of each beam line, the stability of the beam orbit near the light source output point is extremely important. As one of the key guarantees for the stability of the electron beam orbit, The FOFB system can suppress the beam orbit disturbance within a certain bandwidth to an acceptable range. This article introduces the currently progress of the FOFB system, including: the overall architecture scheme and key technical routes; the substation design following the ATCA mechanical architecture; the BPM data acquisition and high-speed transmission using high-performance Rocket I/O transmission Mechanism; embedded high-performance DSP for fast multiplication calculation to realize SVD, etc. The entire system design is progressing in an orderly manner.  
slides icon Slides WEAL03 [40.593 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEAL03  
About • Received ※ 19 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 23 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV003 The Dynamic Modeling and the Control Architecture of the New High-Dynamic Double-Crystal Monochromator (HD-DCM-Lite) for Sirius/LNLS controls, experiment, synchrotron, electron 619
 
  • G.S. de Albuquerque, J.L. Brito Neto, R.R. Geraldes, M.A.L. Moraes, A.V. Perna, M. Saveri Silva, M.S. Souza
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
The High-Dynamic Double-Crystal Monochromator (HD-DCM) has been developed since 2015 at Sirius/LNLS with an innovative high-bandwidth mechatronic architecture to reach the unprecedented target of 10 nrad RMS (1 Hz - 2.5 kHz) in crystals parallelism also during energy flyscans. Now, for beamlines requiring a smaller energy range (3.1 to 43 keV, as compared to 2.3 to 72 keV), there is the opportunity to adapt the existing design towards the so-called HD-DCM-Lite. The control architecture of the HD-DCM is kept, reaching a 20 kHz control rate in NI’s CompactRIO (cRIO). Yet, the smaller gap stroke between crystals allows for removing the long-stroke mechanism and reducing the main inertia by a factor 6, not only simplifying the dynamics of the system, but also enabling faster energy scans. With sinusoidal scans of hundreds of eV up to 20 Hz, this creates an unparalleled bridge between slow step-scan DCMs, and channel-cut quick-EXAFS monochromators. This work presents the dynamic error budgeting and scanning perspectives for the HD-DCM-Lite, including feedback controller design options via loop shaping, feedforward considerations, and leader-follower control strategies.
 
poster icon Poster WEPV003 [1.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV003  
About • Received ※ 13 October 2021       Accepted ※ 22 December 2021       Issue date ※ 26 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV008 Online Automatic Optimization of the Elettra Synchrotron booster, controls, TANGO, experiment 636
 
  • G. Gaio, S. Krecic, F. Tripaldi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Online automatic optimization is a common practice in particle accelerators. Beside the tryouts based on Machine Learning, which are effective especially on non-linear systems and images but are very complex to tune and manage, one of the most simple and robust algorithms, the simplex Nelder Mead, is extensively used at Elettra to automatically optimize the synchrotron parameters. It is currently applied to optimize the efficiency of the booster injector by tuning the pre-injector energy, the trajectory and optics of the transfer lines, and the injection system of the storage ring. It has also been applied to maximize the intensity of the photon beam on a beamline by changing the electron beam position and angle inside the undulator. The optimization algorithm has been embedded in a TANGO device that also implements generic and configurable multi-input multi-output feedback systems. This optimization tool is usually included in a high level automation framework based on behavior trees in charge of the whole process of machine preparation for the experiments.  
poster icon Poster WEPV008 [1.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV008  
About • Received ※ 08 October 2021       Accepted ※ 26 January 2022       Issue date ※ 25 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV011 Research on Correction of Beam Beta Function of HLS-II Storage Ring Based on Deep Learning network, storage-ring, quadrupole, controls 645
 
  • Y.B. Yu, C. Li, W. Li, G. Liu, W. Xu, K. Xuan
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The beam stability of the storage ring determines the light quality of synchrotron radiation. The beam stability of the storage ring will be affected by many factors ’such as magnetic field error, installation error, foundation vibration, temperature variation, etc., so it is inevitable to correct the beam optical parameters to improve the beam stability. In this paper, the deep learning technology is used to establish the HLS-II storage ring beam stability model, and the beam optical parameters can be corrected based on the model. The simulation results show that this method realizes the simulation correction of the Beta function of the HLS-II storage ring, and the correction accuracy precision meets the design requirements.  
poster icon Poster WEPV011 [2.142 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV011  
About • Received ※ 09 October 2021       Revised ※ 15 November 2021       Accepted ※ 17 November 2021       Issue date ※ 21 November 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV013 Design of Magnet Measurement System Based on Multi-Hall Sensor controls, site, factory, power-supply 653
 
  • B.J. Wang, Y.H. Guo, R. Wang, N. Xie
    IMP/CAS, Lanzhou, People’s Republic of China
 
  High-precision magnetic field measurement and control technique significantly guarantees the accurate realization of the magnetic confinement of accelerators. Using real-time magnetic field intensity as the feedback to adjust the magnetic field current input can be a promising strategy. However, the measurement accuracy of the Hall-sensor is hard to meet feedback requirements because of multiple affection from external factors. Meanwhile, the NMR(Nuclear Magnetic Resonance sensor), which can provide high-precision magnetic field measurement, can hardly meet the requirements against the real-time control due to its strict requirements on the uniformity of the measured magnetic field, as well as its low data acquisition speed. Therefore, a magnetic field measurement system based on multi-Hall sensors is designed to solve this problem. Four Hall-sensors are used to measure the target magnetic field in this system. An Adaptive fusion algorithm is used to fused collected values to obtain the best estimate of the magnetic field intensity. This system effectively improves the accuracy of magnetic field measurement and ensures the instantaneity of the measurement.  
poster icon Poster WEPV013 [0.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV013  
About • Received ※ 09 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 November 2021       Issue date ※ 06 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV019 Renovation of the Beam-Based Feedback Controller in the LHC controls, framework, optics, operation 671
 
  • L. Grech, D. Alves, A. Calia, M. Hostettler, S. Jackson, J. Wenninger
    CERN, Meyrin, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  This work presents an extensive overview of the design choices and implementation of the Beam-Based Feedback System (BBFS) used in operation until the LHC Run 2. The main limitations of the BBFS are listed and a new design called BFCLHC, which uses the CERN Front-End Software Architecture (FESA), framework is proposed. The main implementation details and new features which improve upon the usability of the new design are then emphasised. Finally, a hardware agnostic testing framework developed by the LHC operations section is introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV019  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 12 March 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV005 Virtual Reality and Control Systems: How a 3D System Looks Like controls, interface, software, operation 864
 
  • L. Pranovi, M. Montis
    INFN/LNL, Legnaro (PD), Italy
 
  Virtual Reality (VR) technology and its derivatives are mature enough to be used in environments like a nuclear research laboratory, to provide useful tools and procedures to optimize the tasks of developers and operators. Preliminary tests were performed [*] to understand the feasibility of this technology applied to a nuclear physics laboratory with promising feedback. Due to the fact this technology is rapidly diffusing in several different professional heterogeneous environments, such as medicine, architecture, the military and industry, we tried to evaluate the impact coming from a new kind of Human-Machine Interface based on VR.
* L.Pranovi et al., ’Vr as a Service: Use of Virtual Reality in a Nuclear Accelerator Facility’, ICALEPCS 2019, New York, NY, USA
 
poster icon Poster THPV005 [2.374 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV005  
About • Received ※ 10 October 2021       Accepted ※ 21 November 2021       Issue date ※ 19 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)