Keyword: alignment
Paper Title Other Keywords Page
MOPV021 Upgrading the National Ignition Facility’s (NIF) Integrated Computer Control System to Support Optical Thompson Scattering (OTS) Diagnostic controls, laser, database, operation 173
 
  • A.I. Barnes, A.A.S. Awwal, L. Beaulac, B. Blackwell, G.K. Brunton, K. Burns, J.R. Castro Morales, M. Fedorov, R. Lacuata, R.R. Leach, D.G. Mathisen, V.J. Miller Kamm, S. Muralidhar, V. Pacheu, Y. Pan, S. Patankar, B.P. Patel, M. Paul, R. Rozenshteyn, R.J. Sanchez, S. Sauter, M. Taranowski, D. Tucker, K.C. Wilhelmsen, B.A. Wilson, H. Zhang
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
With the ability to deliver 2.1 MJ of 500 TW ultraviolet laser light to a target, the National Ignition Facility (NIF) is the world’s most energetic laser. This combination of energy and power allows the study of materials under conditions similar to the center of the sun. On fusion ignition experiments, plasma generated in the interior of the target shell can detrimentally impact the implosion symmetry and the resulting energy output. We are in the final stages of commissioning a significant new diagnostic system that will allow us to better understand the plasma conditions and improve our symmetry control techniques. This Optical Thompson Scattering (OTS) system consists of two major components: a probe laser beamline capable of delivering a world first 1 J of energy at 211 nm, and a diagnostic that both reflects the probe laser into the target and collects the scattered photons. Between these two components, the control system enhancements required integration of over 450 components into the existing automation suite. This talk will provide an overview of the system upgrade approach and the tools used to efficiently manage and test changes to both our data and software.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-MOPV021  
About • Received ※ 09 October 2021       Accepted ※ 10 February 2022       Issue date ※ 21 February 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV001 The Mirror Systems Benches Kinematics Development for Sirius/LNLS controls, interface, operation, MMI 358
 
  • G.N. Kontogiorgos, A.Y. Horita, L. Martins dos Santos, M.A.L. Moraes, L.F. Segalla
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
At Sirius, many of the optical elements such as mirror systems, monochromators, sample holders and detectors are attached to the ground with high stiffnesses to reduce disturbances at the beam during experiments. Granite benches were developed to couple the optical device to the floor and allow automatic movements, via com-manded setpoints on EPICS that runs an embedded kinematics, during base installation, alignment, commis-sioning and operation of the beamline. They are com-posed by stages and each application has its own geome-try, a set number of Degrees-of-Freedom (DoF) and mo-tors, all controlled by Omron Delta Tau Power Brick LV. In particular, the mirror system was the precursor motion control system for other benches. Since the me-chanical design aims on stiffness, the axes of mirror are not controlled directly, the actuators are along the granite bench. A geometric model was created to simplify the mirror operation, which turn the actuators motion trans-parent to the user and allow him to directly control the mirror axes.
 
poster icon Poster TUPV001 [1.229 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV001  
About • Received ※ 10 October 2021       Revised ※ 18 October 2021       Accepted ※ 20 November 2021       Issue date ※ 22 January 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPV003 The Control System of the Four-Bounce Crystal Monochromators for SIRIUS/LNLS Beamlines controls, feedback, operation, synchrotron 365
 
  • L. Martins dos Santos, P.D. Aranha, L.M. Kofukuda, G.N. Kontogiorgos, M.A.L. Moraes, J.H. Řežende, M. Saveri Silva, H.C.N. Tolentino
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology, and Innovation (MCTI)
CARNAÚBA (Coherent X-ray Nanoprobe) and CATERETÊ (Coherent and Time Resolved Scattering) are the longest beamlines in Sirius - the 4th generation light source at the Brazilian Synchrotron Light Laboratory (LNLS). They comprise Four-Bounce Crystal Monochromators (4CM) for energy selection with strict stability and performance requirements. The motion control architecture implemented for this class of instruments was based on Omron Delta Tau Power Brick LV, controller with PWM amplifier. The 4CM was in-house designed and consists of two channel-cut silicon crystals whose angular position is given by two direct-drive actuators. A linear actuator mounted between the crystals moves a diagnostic device and a mask used to obstruct spurious diffractions and reflections. The system is assembled in an ultra-high vacuum (UHV) chamber onto a motorized granite bench that permits the alignment and the operation with pink-beam. This work details the motion control approach for axes coordination and depicts how the implemented methods led to the achievement of the desired stability, considering the impact of current control, in addition to benchmarking with manufacturer solution.
 
poster icon Poster TUPV003 [1.477 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-TUPV003  
About • Received ※ 10 October 2021       Revised ※ 20 October 2021       Accepted ※ 21 December 2021       Issue date ※ 30 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAL01 Image Processing Alignment Algorithms for the Optical Thomson Scattering Laser at the National Ignition Facility laser, target, optics, plasma 528
 
  • A.A.S. Awwal, T.S. Budge, R.R. Leach, R.R. Lowe-Webb, V.J. Miller Kamm, S. Patankar, B.P. Patel, K.C. Wilhelmsen
    LLNL, Livermore, California, USA
 
  Funding: *This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Understanding plasma performance in the world’s largest and most energetic laser facility, the National Ignition Facility (NIF), is an important step to achieving the goal of inertial confinement fusion in a laboratory setting. The optical Thompson scattering (OTS) laser has been developed to understand the target implosion physics, especially for under-dense plasma conditions. A 5w probe beams can be set up for diagnosing various plasma densities. Just as the NIF laser with 192 laser beams are precisely aligned, the OTS system also requires precision alignment using a series of automated closed loop control steps. CCD images from the OTS laser (OTSL) beams are analyzed using a suite of image processing algorithm. The algorithms provide beam position measurements that are used to control motorized mirrors that steer beams to their defined desired location. In this paper, several alignment algorithms will be discussed with details on how they take advantage of various types of fiducials such as diffraction rings, contrasting squares and circles, octagons and very faint 5w laser beams.
*This is released as LLNL-ABS-821809
 
slides icon Slides WEAL01 [1.303 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEAL01  
About • Received ※ 08 October 2021       Revised ※ 18 October 2021       Accepted ※ 21 November 2021       Issue date ※ 14 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV016 The Automatic LHC Collimator Beam-Based Alignment Software Package software, controls, status, collimation 659
 
  • G. Azzopardi, B. Salvachua
    CERN, Geneva, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The Large Hadron Collider (LHC) at CERN makes use of a complex collimation system to protect its sensitive equipment from unavoidable beam losses. The collimators are positioned around the beam respecting a strict transverse hierarchy. The position of each collimator is determined following a beam-based alignment technique which determines the required jaw settings for optimum performance. During the LHC Run 2 (2015-2018), a new automatic alignment software package was developed and used for collimator alignments throughout 2018*. This paper discusses the usability and flexibility of this new package describing the implementation in detail, as well as the latest improvements and features in preparation for Run 3 starting in 2022. The automation has already successfully decreased the alignment time by 70% in 2018** and this paper explores how to further exploit this software package. Its implementation provides a solid foundation to automatically align any new collimation configurations in the future, as well as allows for further analysis and upgrade of its individual modules.
*G.Azzopardi, et al"Software Architecture for Automatic LHC Collimator Alignment using ML",ICALEPCS19.
**G.Azzopardi, et al"Operational Results on the Fully-Automatic LHC Collimator Alignment",PRAB19.
 
poster icon Poster WEPV016 [0.443 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV016  
About • Received ※ 07 October 2021       Revised ※ 22 October 2021       Accepted ※ 22 December 2021       Issue date ※ 26 December 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPV022 Sample Alignment in Neutron Scattering Experiments Using Deep Neural Network neutron, network, experiment, scattering 686
 
  • J.P. Edelen, K. Bruhwiler, A. Diaw, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • S. Calder
    ORNL RAD, Oak Ridge, Tennessee, USA
  • C.M. Hoffmann
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: DOE Office of Science Office of Basic Energy Science SBIR award number DE-SC0021555
Access to neutron scattering centers, such as Oak Ridge National Laboratory (ORNL) and the NIST Center for Neutron Research, has provided beam energies to investigating a wide variety of applications such as particle physics, material science, and biology. In these experiments, the quality of collected data is very sensitive to sample and beam alignment, and stabilization of the experimental environment, requiring human intervention to tune the beam. While this procedure works, it is inefficient and time-consuming. In the work we present progress towards using machine learning to automate the alignment of a beamline in neutron scattering experiments. Our algorithm uses convolutional neural network to both learn a surrogate of the image data of the sample and to predict the sample contour using a u-net. We tested our algorithm on neutron camera images from the H2-BA powder diffractometer and the Topaz single crystal diffractometer beamlines of ORNL.
 
poster icon Poster WEPV022 [4.472 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-WEPV022  
About • Received ※ 10 October 2021       Revised ※ 22 October 2021       Accepted ※ 21 December 2021       Issue date ※ 06 February 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV012 LHC Collimation Controls System for Run III Operation collimation, controls, operation, software 888
 
  • G. Azzopardi, M. Di Castro, S. Redaelli, B. Salvachua, M. Solfaroli Camillocci
    CERN, Geneva, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  The Large Hadron Collider (LHC) collimation system is designed to protect the machine against unavoidable beam losses. The collimation system for the LHC Run 3, starting in 2022, consists of more than 100 movable collimators located along the 27 km long ring and in the transfer lines. The cleaning performance and machine protection role of the system critically depend on the accurate positioning of the collimator jaws. The collimation control system in place enables remote control and appropriate diagnostics of the relevant parameters. This ensures that the collimators dynamically follow optimum settings in all phases of the LHC operational cycle. In this paper, an overview of the top-level software tools available for collimation control from the control room is given. These tools range from collimator alignment applications to generation tools for collimator settings, as well as collimator scans, settings checks and machine protection sequences. Amongst these tools the key upgrades and newly introduced tools for the Run 3 are presented.  
poster icon Poster THPV012 [5.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV012  
About • Received ※ 07 October 2021       Revised ※ 25 October 2021       Accepted ※ 16 December 2021       Issue date ※ 01 March 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPV040 New Machine Learning Model Application for the Automatic LHC Collimator Beam-Based Alignment injection, flattop, software, operation 953
 
  • G. Azzopardi
    CERN, Geneva, Switzerland
  • G. Ricci
    Sapienza University of Rome, Rome, Italy
 
  A collimation system is installed in the Large Hadron Collider (LHC) to protect its sensitive equipment from unavoidable beam losses. An alignment procedure determines the settings of each collimator, by moving the collimator jaws towards the beam until a characteristic loss pattern, consisting of a sharp rise followed by a slow decay, is observed in downstream beam loss monitors. This indicates that the collimator jaw intercepted the reference beam halo and is thus aligned to the beam. The latest alignment software introduced in 2018 relies on supervised machine learning (ML) to detect such spike patterns in real-time*. This enables the automatic alignment of the collimators with a significant reduction in the alignment time**. This paper analyses the first-use performance of this new software focusing on solutions to the identified bottleneck caused by waiting a fixed duration of time when detecting spikes. It is proposed to replace the supervised ML model with a Long-Short Term Memory model able to detect spikes in time windows of varying lengths, waiting for a variable duration of time determined by the spike itself. This will allow to further speed up the automatic alignment.
*G. Azzopardi et al., "Automatic spike detection in beam loss signals for LHC collimator alignment", NIMA 2019.
**G. Azzopardi et al., "Operational Results of LHC collimator alignment using ML", IPAC’19.
 
poster icon Poster THPV040 [0.894 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2021-THPV040  
About • Received ※ 08 October 2021       Accepted ※ 21 November 2021       Issue date ※ 10 December 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)