
OpenCMW - A MODULAR OPEN COMMON MIDDLE-WARE LIBRARY
FOR EQUIPMENT- AND BEAM-BASED CONTROL SYSTEMS AT FAIR

Ralph J. Steinhagen, H. Bräuning, D. Day, A. Krimm, T. Milosic,
D. Ondreka, A. Schwinn, GSI Helmholtzzentrum, Darmstadt, Germany

Abstract
OpenCMW is an open-source modular event-driven

micro- and middle-ware library for equipment- and beam-
based monitoring as well as feedback control systems for
the FAIR Accelerator Facility.

Based on modern C++20 and Java concepts, it provides
common communication protocols, interfaces to data visual-
isation and processing tools that aid engineers and physicists
at FAIR in writing functional high-level monitoring and
(semi-)automated feedback applications.

The focus is put on minimising the required boiler-plate
code, programming expertise, common error sources, and
significantly lowering the entry-threshold that is required
with the framework. OpenCMW takes care of most of the
communication, data-serialisation, data-aggregation, set-
tings management, Role-Based-Access-Control (RBAC),
and other tedious but necessary control system integrations
while still being open to expert-level modifications, exten-
sions or improvements.

ARCHITECTURE
OpenCMW is a light-weight modular middle-ware twin-

library that combines ØMQ, REST and micro-service design
patterns illustrated in Fig. 1. The Majordomo Protocol Bro-
ker (MDP) provides reliable (a)synchronous request-reply
as well as publish-subscribe (and related radio-dish) com-
munication patterns between external clients and workers,
implementing the business logic that may reside either in-
ternally or externally to the MDP process. Its core relies
primarily on the high-performance and low-latency ØMQ-
based transport layer but can, for example, be optionally

extended by HTTP to also support REST or HTML-based
communication patterns, and optionally secure worker ac-
cess via RBAC [1–16].

OpenCMW strongly embraces lean-code principles and
hence aims at minimising boiler-plate code and to aid light-
weight development of network-based, semi- to fully au-
tomated real-time feedback applications. It thus provides
template implementations for common tasks such as to

a) aggregate, synchronise, and to sanitise data received
from multiple devices,

b) allow to inject custom domain-specific user-code to
numerically post-process the received data, and

c) derive control signals and forward these to other ser-
vices using common communication libraries.

This business logic is implemented by workers that cover:

• optional class-based domain-object definitions for the
input parameter and return value, and

• two event-handler interfaces that are registered either
with the MDP or Event Store, and that implement the
call-back functions further described below.

Notably, developers do not need to rely on IDL-type or other
proprietary definitions that, based on our experience, may
become hard to synchronise and maintain in later devel-
opment iterations. The interfaces are defined by standard
POCO or POJO domain-objects that OpenCMW analyses
using constexpr compile-time (C++) or run-time (Java)
reflection, further described below.

Figure 1: OpenCMW micro-service system architecture combining the Majordomo and event-sourcing design pattern.
.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

TUPV009C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

392 Device Control and Integrating Diverse Systems



DEVICE MODELLING
FAIR provides a wide variety of particle beams with dif-

ferent properties and extraction parameters that are trans-
ported to multiple experiments or storage rings either time-
multiplexed or even simultaneously. Accelerator operation
is thus organised into semi-repetitive ‘patterns’ and nested
substructures (aka. ‘timing contexts’ or ‘<ctx>’) that are
triggered by timing events in order to orchestrate the re-
quired rapid real-time succession of individual actions, data
acquisition, or device reference settings changes.

OpenCMW is flexible with its domain-object modelling
and supports arbitrary setting-types from single scalar fields
up to complex nested tree-like data-structures. However,
based on operational experience at GSI, CERN and other
accelerator facilities, and to be compatible with the existing
implementations, most equipment is modelled using a re-
duced flat ‘device/property’ scheme only [21]. This scheme
models settings essentially through ASCII-based endpoints,
that include filters and loosely follows the more commonly-
known RFC 1808 URI definition [22]:

<device>/<property>?ctx=<ctx>;
<filter_i=val_j>; ... ;<filter_n=val_m>

with the ordering of the optional context selector and filters
after the initial ‘<device>/<property>’ being arbitrary and
separated by a semi-colon (‘;’) or ampersand (‘&’).

DATA AGGREGATION
Most monitoring and feedbacks are rarely SISO but more

commonly MIMO systems. OpenCMW thus provides facili-
ties that aid in the aggregation and synchronisation of input
data that may arrive through different transport channels,
protocols, and from a large number of equipment- or beam-
based systems. To process this data efficiently, as well as to
simplify and reduce potential error sources for developers,
two aggregation strategies are provided:

a) continuous sample-by-sample or chunked data not
aligned to a <ctx>: these are typically processed by
a GNU-Radio-based flow-graph, commonly used in
the domain of software-defined-radios (SDRs [17]), as
illustrated in Fig. 2;

b) chunked data that is already (partially) aligned to a
timing <ctx>: these are typically processed using the
event-sourcing pattern that combines the data across
multiple input sources or larger superordinate <ctx> or
to perform signal post-processing routines on a chunk-
by-chunk basis as illustrated in Fig. 3.

The event-sourcing relies on different types of workers:

• ’adapter‘: tasked with receiving and de-serialising the
specific (possibly foreign) wire-format, and storing the
resulting domain-object alongside its meta-information
into the event store’s event stream;

• ‘<ctx>-matcher’: collecting multiple source domain-
objects into one combined new ’aggregate’ which is
usually triggered by timing events or arrival of a new
<ctx>. The new aggregate is stored inside the same
(or optionally another) event store event/stream, either
once all required data arrived or once a configurable
time-out w.r.t. the aggregation start is reached;

• post-processing workers: performing the actual post-
processing and control actions based on user-supplied
worker handler-callback code;

The handler-callbacks are triggered whenever a new aggre-
gate is written to the event store, receive the actual and past
issuing events, data to facilitate FIR- and IIR-type filtering,
and may notify the MDP to publish the intermediate results.

DESIGN CONSIDERATIONS
There have been many expensive software failures, ac-

cidents, and inefficiencies in the past, most famously the
Ariane flight 501 and Mars Climate Orbiter that failed due
to avoidable type- and physical-unit conversion errors [23,
24]. Our accelerator domain is not immune to these type of
failures, and struggles in addition with organically grown
code-bases that often – as a consequence of Conway’s law1,
time- and resource constraints – cannot be adequately pruned,
refactored or optimised. OpenCMW thus aims at lean, mod-
ern, and long-term sustainable architecture that avoids the
above mistakes by design.
1 “[Developers will] produce a design whose structure is a copy of the

organization’s communication structure”, [25]

Figure 2: Schematic GNU-Radio-based (GR) processing of continuous data as used by the FAIR Digitizers [17–20]. The
data processed by the flow-graph is stored in non-blocking circular buffers (sinks) similar to tagged b-trees that allow to
efficiently chunk the data according to the required timing <ctx> scope.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

Device Control and Integrating Diverse Systems

TUPV009

393

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



Figure 3: Schematic <ctx> multiplexed-based data aggregation based on the event-sourcing design pattern [11].

The transport layer and data serialisation are basic core
functionalities of OpenCMW or any middle-ware for trans-
mitting, storing and later retrieving information by (often
quite) different subsystems. With a multitude to choose
from, a non-negligible subset of frameworks claim to be the
fastest, most efficient, easiest-to-use, etc. A fair comparison
of their performance is rather complex, highly non-trivial,
and thus subjective because the underlying assumptions of
’what counts as important’ is quite different between specific
domains.

Instead, we want to document the rationale as to why we
decided to implement a new middle-ware, its considerations,
constraints, technical core choices, and goals that went into
OpenCMW’s design in the hope that it might be interesting,
perhaps be adopted, inspire new ideas, or any other form of
improvement. OpenCMW’s core paradigms, loosely ordered
according to their importance, are:

1. undogmatic lean and agile software design principles.
2. performance: end-to-end real-time latency minimisa-

tion between the service’s data object being ready, seri-
alised, and sent, until it is received, fully de-serialised,
and ready for further processing by the client2.

3. loose coupling between server- and corresponding
client-side-definitions to provide soft sustainable up-
grade paths.

4. strict separation of concern between the communica-
tion transport layer, serialiser protocol, and user sup-
plied custom-code: OpenCMW provides extendable
interfaces to transparently exchange or add new trans-
port and serialisation protocols simplifying the custom
user-code that does not need to be aware of the actual
protocols that the client may request. This enables more
modular implementation, easier maintenance, and ef-
ficient code-sharing of code blocks between different
projects.

5. static compile-time reflection3[26, 27]: derive inter-
faces directly from C++ or Java domain-objects:

2 Network-IO bandwidth limit driven trade-offs between size and en-
/decoding speed are not of primary concern for our use-case

3 N.B. Java is presently limited to run-time reflection.

• less error-prone and more efficient compared to
other IDL-based solutions that need to rely on
external code-generation tools.

• greatly reduces the cognitive complexity,
see List. 1 and the appendix for code examples.

• improves productivity of new, occasional, or less-
experienced developers who need to be only
“vaguely” familiar with C++ or Java.

• supports UTF8, all primitive/fundamental data
types, nested objects, common data containers.

• efficient (first-class) support of large collections
of numeric (floating-point) data.

6. strong type- and physical-units safety [28–30].

7. OpenAPI [31]: self-documented data-structures with
optional constexpr data field annotations to com-
municate the service’s data-exchange-API intent to
the client (e.g. physical unit, access constraints,
human-understandable description, etc.). This meta-
information can be used to re-generate the domain-
objects on the client-side.

8. Modern C++20 [32] and Java 11 standards:

• more concise with respect to expressing devel-
oper’s intent and constraints.

• easier, safer, and more intuitive syntax for new or
occasional developers.

• better performance, due to larger proliferation
of compile-time constexpr and consteval ex-
pressions and library functionalities.

9. minimise external library dependencies: especially rely
on those already or targeted to become official part of
the C++ ISO standard [26, 28, 32].

10. minimise code-base and code-bloat while providing
hard-to-implement core-functionalities: small code fits
more likely into CPUs’s cache and thus results in faster
execution. Also from a maintenance perspective, more
code requires more time to read and understand, and is
harder to modify, test, or fix.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

TUPV009C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

394 Device Control and Integrating Diverse Systems



1 struct CppDomainObjectExample {
2 Annotated<float, thermodynamic_temperature<kelvin>, "device specific temperature"> temperature = 23.2F;
3 Annotated<float, electric_current<ampere>, "this is the current from ..."> current = 42.F;
4 Annotated<float, energy<electronvolt>, "SIS18 energy at injection before being captured"> injectionEnergy = 8.44e6F;
5 std:string notAnnotated = "Hello World!";
6 // [..]
7 };
8 // refl-cpp-based: targeted and becomes obsolete with the next C++ standard
9 ENABLE_REFLECTION_FOR(CppDomainObjectExample, temperature, current, injectionEnergy, notAnnotated)

1 public class JavaDomainObjectExample {
2 @MetaInfo(description = "device specific temperature", unit = "K")
3 public float temperature = 23.2f;
4 @MetaInfo(description = "this is the current from ...", unit = "A")
5 public float current = 42.f;
6 @MetaInfo(description = "SIS18 energy at injection before being captured", unit = "eV")
7 public float injectionEnergy = 8.44e6f;
8 public String notAnnotated = "Hello World!";
9 // [..]

10 }

Listing 1: C++ POCO and equivalent Java POJO domain-object reflection example.

11. unit-test and CI/CD driven development to minimise er-
rors and detect potential (also quantitative performance)
regressions.

12. free- and open-source LGPLv3-licensed code-base.

It is important to us that this code can be re-used, built- and
improved-upon by anybody and thus we hope that the above
paradigms lower the entry-level and improve the likelihood
of OpenCMW to be adopted also by external users that wish
to understand, upgrade, or bug-fix ’what is under the hood’
or what is of specific interest to them.

PERFORMANCE
In real-time control and notably for feedback systems, per-

formance depends not only on correct results but also when
it is applied to the accelerator or presented to the operators.
The required maximum latency that is to be minimised, corre-
sponding group-delay and phase-lag depends on the specific
application. OpenCMW’s primary use-case are high-level
software-based monitoring and (semi-)automated feedback
applications at FAIR with bandwidths of up to 25 Hz and
latencies well below 10 ms. The framework itself should
contribute only with a small proportion to these latencies.

Since the OpenCMW architecture by design strongly de-
couples, and since there are a wide range of possible combi-
nations, we independently benchmarked the transport-layer
only using small dummy-payloads and serialisation without
the transport layer.

Majordomo Broker
The performance results for our Java-based Majordomo

implementation for both MDP in-process (InProc) and ex-
ternal worker (TCP, via localhost) is shown in Table 1. The
performance is largely determined by the specific ØMQ
implementation (JeroMQ) in the above case [33], polling
loop optimisation, and by itself contributes very little to the
overall latency. This is deemed sufficient for our few Java-
based applications with lower latency requirements. The
C++-based Majordomo implementation, based on libzmq
and loosely on the MDP reference implementation [34, 35],

Table 1: OpenCMW-Java Majordomo Performance (Test-
System: AMD Ryzen 9 5900X)

ØMQ Transport Type msgs/s
REQ/REP synchronous via TCP 12594
REQ/REP synchronous via InProc 27247
REQ/REP asynchronous via TCP 285714
REQ/REP asynchronous via InProc 400000
SUBSCRIBE via SUB-Socket 1538461
SUBSCRIBE via DEALER-socket 666666

aims at latencies below 1 ms to be compatible with FAIR’s
SDR applications [17–20]. This is presently being optimised
and will be released soon.

Serialiser
OpenCMW aims to provide interfaces for service-client

communication where: a) high-performance is important
– usually relying on binary-type (de-)serialisation wire-
formats – and b) where ease of access, notably, REST
and Web-based compatibility is important, often relying
on string-based wire-formats such as JSON, YAML, XML,
etc. Figure 4 shows the round-trip performance results for
OpenCMW and various other common implementations for
both C++ and Java [1, 2, 36–42].

While some implementations provided only map-style
interfaces, each serialiser has been extended and optimised
to (de-)serialise the same equivalent domain-object back-to-
back to have more comparable results with the compile-time
reflection-based approach. A large spread within but also
between binary- and string-based wire-format encoding li-
braries is visible. The ’CmwLight’ serialiser is OpenCMW’s
functional open-source re-implementation of the existing
proprietary CMW-Data protocol that is presently used in-
ternally at GSI[21]. The benchmark is available at [43].
Pull-Requests to improve the OpenCMW and other seri-
alisers are welcome. Tentative results indicate that many
of the serialiser supporting binary wire-formats seem to
be optimised for simple data structures that are typically
much smaller than 1k Bytes rather than large numeric ar-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

Device Control and Integrating Diverse Systems

TUPV009

395

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



1 10 100 1,000

memcpy

OpenCMW

CmwLight

CMW

FlatBuffers
Cap’nProto

protobuf

OpenCMW-json

Jsoniter

Jackson
fastjson

Gson

round-trip [us]

numeric payload 28 kB

c++

java

0.1 1 10 100

round-trip [us]

string payload 5 kB

c++

java

Figure 4: Round-trip performance for converting the input- to output-domain-object via the given wire-format for numeric-
(left) and std::string-data (right) dominated domain-objects (N.B. log-scale, smaller is better).

rays that were either slow to encode and/or required custom
serialiser extensions. Jsoniter showed the best results for
parsing JSON in Java [39]. We thus decided to use it as
the parsing back-end for the OpenCMW-JSON deserialiser
also to avoid common mistakes and error-handling when
processing incomplete or erroneous JSON streams that the
deserialiser must be able to handle. Since these error types
are non-issues for the serialiser side, we adapted a custom
JSON serialiser implementation to the compile-time reflec-
tion approach which proved to be more performant. This is
also the reason for the visible performance differences be-
tween OpenCMW-JSON and jsoniter in Fig. 4. At the time
of the test, the C++ simdjson library was not yet evaluated
but appears promising and will thus be included in future
benchmarks [44].

DOMAIN API EVOLUTION
An important consideration for every distributed system

is how to be able to update the API defining domain-objects
without having to simultaneously update every other com-
ponent of the system. To allow for a reliable update strategy
OpenCMW uses the transferred metadata to validate the data
during deserialisation.

The MDP broker (or any other caller of the serialiser) can
control if metadata should be serialised, the type of checks
that should be performed on deserialisation, and how errors
should be treated. The behaviour of the error handling can
be controlled with domain-object annotations.

To optimise the performance impact for high update rates,
OpenCMW assumes domain objects stay identical during
one connection and only performs checks on the first update.
The MDP client calls the verbose deserialiser on the first
update and the fast deserialiser on subsequent updates. If
there are differences in the first update it can:

• ignore compatible changes like new optional fields or
missing optional fields. The client code can still check
for the presence of optional fields through the return
value of the serialiser.

• request a fallback property if available and warn the
user of the legacy API.

• throw an exception.

Worker implementations should keep future extensions
in mind when defining their domain objects, but not at the
cost of a clean design. When changes are necessary, new
(non-mandatory) fields can be added in a backward com-
patible way if they don’t change the meaning of the other
data. If non-compatible changes like changing data types are
performed, a fallback property providing the old domain ob-
ject should be offered in the ’two on production’ pattern[45,
46]. It is encouraged to also make use of the ’aggressive
obsolescence’ and ’experimental preview’ patterns, to keep
the burden of API maintenance manageable. There is no
explicit versioning of the domain objects, mismatches in
domain objects are determined by the deserialiser.

CONCLUSION
OpenCMW is a new open-source modular event-driven

micro-service and middle-ware library for equipment- and
beam-based monitoring as well as feedback control systems
for the FAIR Accelerator Facility.

Based on modern C++20 and Java concepts, together with
the benefits and chances of an agile open-source develop-
ment, we believe that the above lean software development
principles are key ingredients and will help experienced as
well as entry-level engineers and physicists to write, share,
and improve functional and long-term maintainable code
for high-level monitoring and (semi-)automated feedback
applications both at FAIR, other laboratories as well as used
by other interested developers elsewhere. For detailed in-
formation, code examples, or to participate in this project,
please visit and interact with the authors via [1–3].

ACKNOWLEDGEMENTS
The implementation heavily relies upon and re-uses time-

tried and well-established concepts from ØMQ (notably
the Majordomo communication pattern [8]), LMAX’s lock-
free ring-buffer disruptor [11], GNU-Radio real-time signal
processing framework [17], Javalin for the RESTful inter-
face [47], as well as previous implementations and experi-
ences gained at GSI, FAIR and CERN [21, 48–57].

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

TUPV009C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

396 Device Control and Integrating Diverse Systems



APPENDIX
1 package io.opencmw.server.rest.samples;
2
3 import static io.opencmw.OpenCmwProtocol.EMPTY_URI;
4
5 import java.io.IOException;
6 import java.net.URI;
7 import java.util.Objects;
8 import java.util.Timer;
9 import java.util.TimerTask;

10 import java.util.concurrent.TimeUnit;
11
12 import org.slf4j.Logger;
13 import org.slf4j.LoggerFactory;
14 import org.zeromq.ZContext;
15
16 import io.opencmw.domain.NoData;
17 import io.opencmw.rbac.BasicRbacRole;
18 import io.opencmw.rbac.RbacRole;
19 import io.opencmw.serialiser.annotations.MetaInfo;
20 import io.opencmw.server.MajordomoBroker;
21 import io.opencmw.server.MajordomoWorker;
22 import io.opencmw.server.rest.MajordomoRestPlugin;
23
24 import zmq.util.Utils;
25
26 public class BasicSample {
27 private static final Logger LOGGER = LoggerFactory.getLogger(BasicSample.class);
28
29 public static void main(String[] argv) throws IOException {
30 final MajordomoBroker broker = new MajordomoBroker("PrimaryBroker", EMPTY_URI, BasicRbacRole.values());
31 final URI brokerRouterAddress = broker.bind(URI.create("mdp://*:" + Utils.findOpenPort()));
32 final URI brokerSubscriptionAddress = broker.bind(URI.create("mds://*:" + Utils.findOpenPort()));
33 broker.start();
34 new MajordomoRestPlugin(broker.getContext(), "Test HTTP/REST Server", "*:8080").start();
35 // instantiating and starting custom user-service
36 new HelloWorldWorker(broker.getContext(), "helloWorld", BasicRbacRole.ANYONE).start();
37 }
38
39 @MetaInfo(description = "My first 'Hello World!' Service")
40 public static class HelloWorldWorker extends MajordomoWorker<BasicRequestCtx, NoData, ReplyData> {
41 public HelloWorldWorker(final ZContext ctx, final String serviceName, final RbacRole<?>... rbacRoles) {
42 super(ctx, serviceName, BasicRequestCtx.class, NoData.class, ReplyData.class, rbacRoles);
43
44 // the custom used code:
45 this.setHandler((rawCtx, requestContext, requestData, replyContext, replyData) -> {
46 final String name = Objects.requireNonNullElse(requestContext.name, "");
47 LOGGER.atInfo().addArgument(rawCtx.req.command).addArgument(rawCtx.req.topic)
48 .log("{} request for worker - requested topic '{}'");
49 replyData.returnValue = name.isBlank() ? "Hello World" : "Hello, " + name + "!";
50 replyContext.name = name.isBlank() ? "At" : (name + ", at") + " your service!";
51 });
52
53 // simple asynchronous notify example - (real-world use-cases would use another updater than Timer)
54 new Timer(true).scheduleAtFixedRate(new TimerTask() {
55 private final BasicRequestCtx notifyContext = new BasicRequestCtx(); // re-use to avoid gc
56 private final ReplyData notifyData = new ReplyData(); // re-use to avoid gc
57 private int i;
58 @Override
59 public void run() {
60 notifyContext.name = "update context #" + i;
61 notifyData.returnValue = "arbitrary data - update iteration #" + i++;
62 try {
63 HelloWorldWorker.this.notify(notifyContext, notifyData);
64 } catch (Exception e) {
65 // further handle exception if necessary
66 }
67 }
68 }, TimeUnit.SECONDS.toMillis(1), TimeUnit.SECONDS.toMillis(2));
69 }
70 }
71
72 @MetaInfo(description = "arbitrary request domain context object", direction = "IN")
73 public static class BasicRequestCtx {
74 @MetaInfo(description = " optional 'name' OpenAPI documentation")
75 public String name;
76 }
77
78 @MetaInfo(description = "arbitrary reply domain object", direction = "OUT")
79 public static class ReplyData {
80 @MetaInfo(description = " optional 'returnValue' OpenAPI documentation", unit = "a string")
81 public String returnValue;
82 }
83 }

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

Device Control and Integrating Diverse Systems

TUPV009

397

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] FAIR. ‘OpenCMW C++ Project’. (2021), https://github.
com/fair-acc/opencmw-cpp

[2] FAIR. ‘OpenCMW Java Project’. (2020), https://github.
com/fair-acc/opencmw-java

[3] FAIR. ‘OpenCMW Gitter Forum’. (2021), https : / /
gitter.im/fair-acc/opencmw

[4] A. Krimm and R. Steinhagen, ‘FAIR Common Specifica-
tion - Modular Open Common Middle-Ware Library for
Equipment- and Beam-Based Control Systems of the FAIR
Accelerators’, FAIR, Tech. Rep., 2020. https://edms.
cern.ch/document/2444348

[5] P. Hintjens, ZeroMQ. O’Reilly Media, Inc., 2013, isbn:
9781449334062. https://zguide.zeromq.org

[6] ZeroMQ, ‘ZeroMQ home-page’, The ZeroMQ Project, Tech.
Rep., 2020. https://zeromq.org/

[7] ZeroMQ, ‘ZeroMQ Project Respository’, The ZeroMQ
Project, Tech. Rep., 2013-2020. https://github.com/
zeromq

[8] P. Hintjens, ‘Majordomo Protocol RFC’, The ZeroMQ
Project, Tech. Rep., 2012. https://rfc.zeromq.org/
spec/18/

[9] P. Hintjens, ‘ZeroMQ Publish-Subscribe RFC’, The ZeroMQ
Project, Tech. Rep., 2014. https://rfc.zeromq.org/
spec/29/

[10] D. Somech, ‘ZeroMQ Radio-Dish RFC’, The ZeroMQ
Project, Tech. Rep., 2020. https://rfc.zeromq.org/
spec/48/

[11] M. Thompson, D. Farley, M. Barker, P. Gee and A. Stew-
art. ‘LMAX Disruptor: High performance alternative to
bounded queues for exchanging data between concurrent
threads’. (2011), https://lmax-exchange.github.io/
disruptor/

[12] National Institute of Standards and Technology, ‘Role Based
Access Control - RBAC’, NIST, Tech. Rep., 2020. https:
//csrc.nist.gov/projects/role-based-access-

control/faqs

[13] D. F. Ferraiolo, D. R. Kuhn and R. Chandramouli, Role-
Based Access Control, 2nd. USA: Artech House, Inc., 2007,
isbn: 1596931132.

[14] R. T. Fielding, ‘Architectural Styles and the Design of
Network-based Software Architectures - Chapter 5: Repre-
sentational State Transfer (REST)’, Ph.D. dissertation, Uni-
versity of California, Irvine, 2000. https://www.ics.
uci.edu/~fielding/pubs/dissertation/fielding_

dissertation.pdf

[15] T. Berners-Lee and D. Connolly, Hypertext markup language
— 2.0, Internet RFC 1866, Nov. 1995.

[16] R. Fielding et al., ‘RFC 2616, Hypertext Transfer Protocol
– HTTP/1.1’, RFC Editor, Tech. Rep., 1999. http://www.
rfc.net/rfc2616.html

[17] GNU Radio Website. (accessed May 2020), http://www.
gnuradio.org

[18] R. J. Steinhagen et al., ‘Generic Digitization of Analog
Signals at FAIR – First Prototype Results at GSI’, in
Proc. 10th International Particle Accelerator Conference
(IPAC’19), Melbourne, Australia, 19-24 May 2019, (Mel-
bourne, Australia), ser. International Particle Accelerator
Conference, Geneva, Switzerland: JACoW Publishing, Jun.
2019, pp. 2514–2517, isbn: 978-3-95450-208-0. doi: 10.
18429/JACoW-IPAC2019-WEPGW021. http://jacow.

org/ipac2019/papers/wepgw021.pdf

[19] FAIR. ‘gr-digitizers repository’. (2021), https://github.
com/fair-acc/gr-digitizers

[20] FAIR. ‘gr-flowgraph repository’. (2021), https://github.
com/fair-acc/gr-flowgraph

[21] J. Lauener and W. Sliwinski, ‘How to design & implement
a modern communication middleware based on ZeroMQ’,
in Proceedings of ICALEPCS’2017, (Barcelona, Spain), JA-
CoW, Ed., ser. International Conference on Accelerator and
Large Experimental Control Systems, 2017, MOBPL05. 7 p.
doi: 10.18429/JACoW-ICALEPCS2017-MOBPL05. https:
//cds.cern.ch/record/2305650

[22] R. T. Fielding, ‘Relative Uniform Resource Locators’, RFC
Editor, Tech. Rep. 1808, Jun. 1995, 16 pp. doi: 10.17487/
RFC1808. https://rfc-editor.org/rfc/rfc1808.
txt

[23] J.-L. L. et al, ARIANE 5 Flight 501 Failure: Report by the
Enquiry Board. European Space Agency — ESA, Jul. 1996.
https : / / esamultimedia . esa . int / docs / esa - x -

1819eng.pdf

[24] A. G. Stephenson et al., Mars Climate Orbiter Mishap Inves-
tigation Board: Phase I Report. Jet Propulsion Laboratory
(U.S.), United States. National Aeronautics and Space Ad-
ministration, Nov. 1999. https://llis.nasa.gov/llis_
lib/pdf/1009464main1_0641-mr.pdf

[25] M. E. Conway, ‘How do committees invent?’, Datamation,
Apr. 1968. https://www.melconway.com/Home/pdf/
committees.pdf

[26] D. Sankel. ‘N4856 – C++ Extensions for Reflection’. (Mar.
2020), http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2020/n4856.pdf

[27] V. Karaganev. ‘refl-cpp — a compile-time reflection library
for C++’. (2020), https://github.com/veselink1/
refl-cpp

[28] M. Pusz. ‘P1935R2 – A C++ Approach to Physical Units’.
(Jan. 2020), http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2020/p1935r2.html

[29] M. Pusz. ‘A Physical Units Library For the Next C++’. (Sep.
2020), https://github.com/CppCon/CppCon2020/
blob / main / Presentations / a _ physical _ units _

library_for_the_next_cpp

[30] M. Pusz. ‘mp-units - A Units Library for C++’. (2021),
https://github.com/mpusz/units

[31] OpenAPI Initiative. ‘The OpenAPI Specification’. (2016-
2021), https : / / github . com / OAI / OpenAPI -
Specification

[32] ISO, ISO/IEC 14882:2020: Programming languages — C++.
Geneva, Switzerland: International Organization for Stan-
dardization — ISO, 2020, p. 1853. https://www.iso.
org/standard/79358.html

[33] ZeroMQ. ‘JeroMQ – Pure Java implementation of libzmq’.
(2021), https://github.com/zeromq/jeromq

[34] ZeroMQ. ‘libzmq – ZeroMQ core engine in C++, implements
ZMTP/3.1’. (2021), https : / / github . com / zeromq /
libzmq

[35] ZeroMQ. ‘Majordomo Reference Implementation’. (2021),
https://github.com/zeromq/majordomo

[36] Renshaw, David and Hancock, Harris and Varda, Kenton.
‘Cap’n Proto Library’. (2021), https://github.com/
capnproto/capnproto

[37] W. van Oortmerssen et al. ‘FlatBuffers’. (2021), https://
github.com/google/flatbuffers

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

TUPV009C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

398 Device Control and Integrating Diverse Systems



[38] S. Ghemawat, J. Dean, D. Dulitz, C. Silverstein, P. Haahr
and C. Anderson. ‘Protocol Buffers - Google’s data in-
terchange format’. (2021), https : / / github . com /
protocolbuffers/protobuf

[39] Tao Wen. ‘Json Iterator - Java’. (2021), https://github.
com/json-iterator/java

[40] Brown, Paul and Saloranta, Tatu. ‘Jackson’. (2021), https:
//github.com/FasterXML/jackson

[41] Alibaba. ‘FastJson Library’. (2021), https : / / github .
com/alibaba/fastjson

[42] ‘Gson’. (2021), https://github.com/google/gson
[43] FAIR. ‘OpenCMW C++ Serialiser Benchmarks’. (2021),

https : / / github . com / fair - acc / opencmw -

benchmarks-cpp

[44] e. a. Daniel Lemire John Keiser. ‘simdjson : Parsing gigabytes
of JSON per second’. (2021), https://github.com/
simdjson/simdjson

[45] D. Lübke, O. Zimmermann, C. Pautasso, U. Zdun and M.
Stocker, ‘Interface evolution patterns: Balancing compatibil-
ity and extensibility across service life cycles’, in Proceedings
of the 24th European Conference on Pattern Languages of
Programs, ser. EuroPLop ’19, Irsee, Germany: Association
for Computing Machinery, 2019. doi: 10.1145/3361149.
3361164.

[46] A. Jesse. ‘API evolution the right way’. (2019), https://
opensource.com/article/19/5/api-evolution-

right-way

[47] D. Aas. ‘Javalin - A simple web framework for Java and
Kotlin’. (2021), https://github.com/tipsy/javalin

[48] R. J. Steinhagen and R. Bär, ‘FAIR Common Specification:
Accelerator and Beam Modes’, GSI & FAIR, Tech. Rep.,
2017. https://edms.cern.ch/document/1823352/

[49] H. Hüther, J. Fitzek, R. Müller and A. Schaller, ‘Realiza-
tion of a Concept for Scheduling Parallel Beams in the
Settings Management System for FAIR’, in Proceedings of
ICALEPCS’15, Melbourne, Australia, 2015.

[50] R. J. Steinhagen et al., ‘FAIR Common Specification: Digiti-
zation of Analog Signals at FAIR’, GSI & FAIR, Tech. Rep.,
2017. https://edms.cern.ch/document/1823376/

[51] J. Serrano et al., ‘White Rabbit: Sub-nanosecond Timing
Distribution over Ethernet’, in Proc. of 2009 International
Symposium on Precision Clock Synchronization for Measure-
ment, Control and Communication, Brescia, Italy: IEEE, Oct.
2009, pp. 1–4. doi: 10.1109/ISPCS.2009.5340196.

[52] S. Deghaye, M. Lamont, L. Mestre, M. Misiowiec, W. Sli-
winski and G. Kruk, ‘LHC Software Architecture (LSA) –
Evolution toward LHC Beam Commissioning’, in Proc. 11th
Int. Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS’07), Oak Ridge, TN, USA, Oct. 2007,
pp. 307–309.

[53] R. Müller, J. Fitzek and D. Ondreka, ‘Evaluating the LHC
Software Architecture for Data Supply and Setting Manage-
ment within the FAIR Control System’, in Proc. 12th Int.
Conf. on Accelerator and Large Experimental Control Sys-
tems (ICALEPCS’09), GSI Helmholtzzentrum, Darmstadt,
Germany, Kobe, Japan, Oct. 2009, pp. 697–699.

[54] D. Ondreka, J. Fitzek, H. Liebermann and R. Müller, ‘Set-
tings Generation for FAIR’, in Proc. of International Particle
Accelerator Conference (IPAC’12), GSI Helmholtzzentrum,
Darmstadt, Germany, New Orleans, Louisiana, USA, May
2012, pp. 3963–3965.

[55] M. Arruat et al., ‘Front-End Software Architecture (FESA)’,

in Proc. 11th Int. Conf. on Accelerator and Large Experi-
mental Control Systems (ICALEPCS’07), Oak Ridge, TN,
USA, Oct. 2007, pp. 310–312.

[56] S. Matthies, H. Bräuning, A. Schwinn and S. Deghaye,
‘FESA3 Integration in GSI for FAIR’, in Proc. 10th Int. Work-
shop on Personal Computers and Particle Accelerator Con-
trols (PCaPAC’14), Karlsruhe, Germany, Oct. 2014, pp. 43–
45.

[57] V. Rapp and W. Sliwinski, ‘Controls Middleware for FAIR’,
in Proc. 10th Int. Workshop on Personal Computers and Parti-
cle Accelerator Controls (PCaPAC’14), Karlsruhe, Germany,
Oct. 2014, pp. 4–6.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-TUPV009

Device Control and Integrating Diverse Systems

TUPV009

399

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


