Keyword: radiation
Paper Title Other Keywords Page
MOPMN010 Development of a Surveillance System with Motion Detection and Self-location Capability network, status, survey, controls 257
 
  • M. Tanigaki, S. Fukutani, Y. Hirai, H. Kawabe, Y. Kobayashi, Y. Kuriyama, M. Miyabe, Y. Morimoto, T. Sano, N. Sato, K. Takamiya
    KURRI, Osaka, Japan
 
  A surveillance system with the motion detection and the location measurement capability has been in development for the help of effective security control of facilities in our institute. The surveillance cameras and sensors placed around the facilities and the institute have the primary responsibility for preventing unwanted accesses to our institute, but there are some cases where additional temporary surveillance cameras are used for the subsidiary purposes. Problems in these additional surveillance cameras are the detection of such unwanted accesses and the determination of their respective locations. To eliminate such problems, we are constructing a surveillance camera system with motion detection and self-locating features based on a server-client scheme. A client, consisting of a network camera, wi-fi and GPS modules, acquires its location measured by use of GPS or the radio wave from surrounding wifi access points, then sends its location to a remote server along with the motion picture over the network. The server analyzes such information to detect the unwanted access and serves the status or alerts on a web-based interactive map for the easy access to such information. We report the current status of the development and expected applications of such self-locating system beyond this surveillance system.  
 
MOPMS032 Re-engineering of the SPring-8 Radiation Monitor Data Acquisition System data-acquisition, controls, operation, monitoring 401
 
  • T. Masuda, M. Ishii, K. Kawata, T. Matsushita, C. Saji
    JASRI/SPring-8, Hyogo-ken, Japan
 
  We have re-engineered the data acquisition system for the SPring-8 radiation monitors. Around the site, 81 radiation monitors are deployed. Seventeen of them are utilized for the radiation safety interlock system for the accelerators. The old data-acquisition system consisted of dedicated NIM-like modules linked with the radiation monitors, eleven embedded computers for data acquisition from the modules and three programmable logic controllers (PLCs) for integrated dose surveillance. The embedded computers periodically collected the radiation data from GPIB interfaces with the modules. The dose-surveillance PLCs read analog outputs in proportion to the radiation rate from the modules. The modules and the dose-surveillance PLCs were also interfaced with the radiation safety interlock system. These components in the old system were dedicated, black-boxed and complicated for the operations. In addition, GPIB interface was legacy and not reliable enough for the important system. We, therefore, decided to replace the old system with a new one based on PLCs and FL-net, which were widely used technologies. We newly deployed twelve PLCs as substitutes for all the old components. Another PLC with two graphic panels is installed near a central control room for centralized operations and watches for the all monitors. All the new PLCs and a VME computer for data acquisition are connected through FL-net. In this paper, we describe the new system and the methodology of the replacement within the short interval between the accelerator operations.  
poster icon Poster MOPMS032 [1.761 MB]  
 
MOPMU040 REVOLUTION at SOLEIL: Review and Prospect for Motion Control controls, software, TANGO, hardware 525
 
  • D. Corruble, P. Betinelli-Deck, F. Blache, J. Coquet, N. Leclercq, R. Millet, A. Tournieux
    SOLEIL, Gif-sur-Yvette, France
 
  At any synchrotron facility, motors are numerous: it is a significant actuator of accelerators and the main actuator of beamlines. Since 2003, the Electronic Control and Data Acquisition group of SOLEIL has defined a modular and reliable motion architecture integrating industrial products (Galil controller, Midi Ingénierie and Phytron power boards). Simultaneously, the software control group has developed a set of dedicated Tango devices. At present, more than 1000 motors and 200 motion controller crates are in operation at SOLEIL. Aware that the motion control is important in improving performance as the positioning of optical systems and samples is a key element of any beamline, SOLEIL wants to upgrade its motion controller in order to maintain the facility at a high performance level and to be able to answer to new requirements: better accuracy, complex trajectory and coupling multi-axis devices like a hexapod. This project is called REVOLUTION (REconsider Various contrOLler for yoUr moTION).  
poster icon Poster MOPMU040 [1.388 MB]  
 
WEMMU011 Radiation Safety Interlock System for SACLA (XFEL/SPring-8) electron, gun, controls, network 710
 
  • M. Kago, T. Matsushita, N. Nariyama, C. Saji, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken, Japan
  • Y. Asano, T. Hara, T. Itoga, Y. Otake, H. Takebe
    RIKEN/SPring-8, Hyogo, Japan
  • H. Tanaka
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  The radiation safety interlock system for SACLA (XFEL/SPring-8) protects personnel from radiation hazards. The system controls access to the accelerator tunnel, monitors the status of safety equipment such as emergency stop buttons, and gives permission for accelerator operation. The special feature of the system is a fast beam termination when the system detects an unsafe state. A total beam termination time is required less than 16.6 ms (linac operation repetition cycle: 60 Hz). Especially important is the fast beam termination when the electron beams deviates from the proper transport route. Therefore, we developed optical modules in order to transmit a signal at a high speed for a long distance (an overall length of around 700 m). An exclusive system was installed for fast judgment of a proper beam route. It is independent from the main interlock system which manages access control and so on. The system achieved a response time of less than 7ms, which is sufficient for our demand. The construction of the system was completed in February 2011 and the system commenced operation in March 2011. We will report on the design of the system and its detailed performance.  
slides icon Slides WEMMU011 [0.555 MB]  
poster icon Poster WEMMU011 [0.571 MB]  
 
WEPMN026 Evolution of the CERN Power Converter Function Generator/Controller for Operation in Fast Cycling Accelerators Ethernet, controls, network, software 939
 
  • D.O. Calcoen, Q. King, P.F. Semanaz
    CERN, Geneva, Switzerland
 
  Power converters in the LHC are controlled by the second generation of an embedded computer known as a Function Generator/Controller (FGC2). Following the success of this control system, new power converter installations at CERN will be based around an evolution of the design - a third generation called FGC3. The FGC3 will initially be used in the PS Booster and Linac4. This paper compares the hardware of the two generations of FGC and details the decisions made during the design of the FGC3.  
poster icon Poster WEPMN026 [0.586 MB]  
 
WEPMU005 Personnel Protection, Equipment Protection and Fast Interlock Systems: Three Different Technologies to Provide Protection at Three Different Levels controls, linac, network, interlocks 1055
 
  • D.F.C. Fernández-Carreiras, D.B. Beltrán, J. Klora, O. Matilla, J. Moldes, R. Montaño, M. Niegowski, R. Ranz, A. Rubio, S. Rubio-Manrique
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The Personnel Safety System is based on PILZ PLCs, SIL3 compatible following the norm IEC 61508. It is independent from other subsystems and relies on a dedicated certification by PILZ first and then by TÜV. The Equipment Protection System uses B&R hardware and comprises more than 50 PLCs and more than 100 distributed I/0 modules installed inside the tunnel. The CPUs of the PLCs are interconnected by a deterministic network, supervising more than 7000 signals. Each Beamline has an independent system. The fast interlocks use the bidirectional fibers of the MRF timing system for distributing the interlocks in the microsecond range. Events are distributed by fiber optics for synchronizing more than 280 elements.  
poster icon Poster WEPMU005 [32.473 MB]  
 
WEPMU022 Quality-Safety Management and Protective Systems for SPES controls, monitoring, proton, operation 1108
 
  • S. Canella, D. Benini
    INFN/LNL, Legnaro (PD), Italy
 
  SPES (Selective Production of Exotic Species) is an INFN project to produce Radioactive Ion Beams (RIB) at Laboratori Nazionali di Legnaro (LNL). The RIB will be produced using the proton induced fission on a Direct Target of UCx. In SPES the proton driver will be a Cyclotron with variable energy (15-70 MeV) and a maximum current of 0.750 mA on two exit ports. The SPES Access Control System and the Dose Monitoring will be integrated in the facility Protective System to achieve the necessary high degree of safety and reliability and to prevent dangerous situations for people, environment and the facility itself. A Quality and Safety Management System for SPES (QSMS) will be realized at LNL for managing all the phases of the project (from design to decommissioning), including therefore the commissioning and operation of the Cyclotron machine too. The Protective System, its documents, data and procedures will be one of the first items that will be considered for the implementation of the QSMS of SPES. Here a general overview of SPES Radiation Protection System, its planned architecture, data and procedures, together with their integration in the QSMS are presented.  
poster icon Poster WEPMU022 [1.092 MB]  
 
WEPMU024 The Radiation Monitoring System for the LHCb Inner Tracker luminosity, detector, monitoring, electronics 1115
 
  • O. Okhrimenko, V. Iakovenko, V.M. Pugatch
    NASU/INR, Kiev, Ukraine
  • F. Alessio, G. Corti
    CERN, Geneva, Switzerland
 
  The performance of the LHCb Radiation Monitoring System (RMS) [1], designed to monitor radiation load on the Inner Tracker [2] silicon micro-strip detectors, is presented. The RMS comprises Metal Foil Detectors (MFD) read-out by sensitive Charge Integrators [3]. MFD is a radiation hard detector operating at high charged particle fluxes. RMS is used to monitor radiation load as well as relative luminosity of the LHCb experiment. The results obtained by the RMS during LHC operation in 2010-2011 are compared to the Monte-Carlo simulation.
[1] V. Pugatch et al., Ukr. J. Phys 54(4), 418 (2009).
[2] LHCb Collaboration, JINST S08005 (2008).
[3] V. Pugatch et al., LHCb Note 2007-062.
 
poster icon Poster WEPMU024 [3.870 MB]  
 
WEPMU028 Development Status of Personnel Protection System for IFMIF/EVEDA Accelerator Prototype operation, controls, monitoring, status 1126
 
  • T. Kojima, T. Narita, K. Nishiyama, H. Sakaki, H. Takahashi, K. Tsutsumi
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  The Control System for IFMIF/EVEDA* accelerator prototype consists of six subsystems; Central Control System (CCS), Local Area Network (LAN), Personnel Protection System (PPS), Machine Protection System (MPS), Timing System (TS) and Local Control System (LCS). The IFMIF/EVEDA accelerator prototype provides deuteron beam with power greater than 1 MW, which is the same as that of J-PARC and SNS. The PPS is required to protect technical and engineering staff against unnecessary exposure, electrical shock hazard and the other danger phenomena. The PPS has two functions of building management and accelerator management. For both managements, Programmable Logic Controllers (PLCs), monitoring cameras and limit switches and etc. are used for interlock system, and a sequence is programmed for entering and leaving of controlled area. This article presents the PPS design and the interface against each accelerator subsystems in details.
* International Fusion Material Irradiation Facility / Engineering Validation and Engineering Design Activity
 
poster icon Poster WEPMU028 [1.164 MB]  
 
THBHAUST05 First Operation of the Wide-area Remote Experiment System experiment, operation, controls, synchrotron 1193
 
  • Y. Furukawa, K. Hasegawa
    JASRI/SPring-8, Hyogo-ken, Japan
  • G. Ueno
    RIKEN Spring-8 Harima, Hyogo, Japan
 
  The Wide-area Remote Experiment System (WRES) at the SPring-8 has been successfully developed [1]. The system communicates with the remote user's based on the SSL/TLS with the bi-directional authentication to avoid the interference from non-authorized access to the system. The system has message filtering system to allow remote user access only to the corresponding beamline equipment and safety interlock system to protect persons aside the experimental station from accidental motion of heavy equipment. The system also has a video streaming system to monitor samples or experimental equipment. We have tested the system from the point of view of safety, stability, reliability etc. and successfully made first experiment from remote site of RIKEN Wako site 480km away from SPring-8 in the end of October 2010.
[1] Y. Furukawa, K. Hasegawa, D. Maeda, G. Ueno, "Development of remote experiment system", Proc. ICALEPCS 2009(Kobe, Japan) P.615
 
slides icon Slides THBHAUST05 [5.455 MB]  
 
FRAAULT03 Development of the Diamond Light Source PSS in conformance with EN 61508 database, controls, interlocks, operation 1289
 
  • M.C. Wilson, A.G. Price
    Diamond, Oxfordshire, United Kingdom
 
  Diamond Light Source is constructing a third phase (Phase III) of photon beamlines and experiment stations. Experience gained in the design, realization and operation of the Personnel Safety Systems (PSS) on the first two phases of beamlines is being used to improve the design process for this development. Information on the safety functionality of Phase I and Phase II photon beamlines is maintained in a hazard database. From this reports are used to assist in the design, verification and validation of the new PSSs. The data is used to make comparisons between beamlines, validate safety functions and to record documentation for each beamline. This forms part of documentations process demonstrating conformance to EN 61508.  
slides icon Slides FRAAULT03 [0.372 MB]