A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

collider

       
Paper Title Other Keywords Page
MOXPA01 The Global Design Initiative for an International Linear Collider positron, linear-collider, electron, proton 1
 
  • B.C. Barish
    CALTECH, Pasadena, California
  Two years after the selection of the SC technology and a few months before the release of the ILC Conceptual Design Report, the presentation will review the main issues towards an ILC project and the world-wide collaboration presently set-up to address them. It will especially emphasize the challenges both technical (performances, reliability, machine protection, cost minimisation, industrialisation) and organisational, in a world-wide collaboration for the first time from the very beginning of the project. It will then present the status of the performances already demonstrated, the R&D presently envisaged to improve them or reduce the cost, the test facilities set-up to address them and the effort towards technology transfer to industry and industrialisation. Finally, it will present the plans and schedule for the future as well as the site specific parameters and cost issues.  
slides icon Transparencies
 
MOPCH169 High Pressure Rinsing Water Jet Characterization LEFT, TESLA, DIAMOND, linear-collider 460
 
  • D. Sertore, E. Cavaliere, M. Fusetti, P. Michelato, C. Pagani, P. Pierini
    INFN/LASA, Segrate (MI)
  High pressure rinsing is widely used as the final wet step in the high field superconducting cavities production. The interaction of an high speed ultra pure water jet with the niobium surface depends on various parameters such as water pressure, water throughput, treatment duration, cavity rotation speed, etc. In this paper we illustrate a simple technique for the characterization of water jet parameters based on the momentum transfer between the water jet and a load cell. The jet profile and its dependence on water pressure as well as the force exerted by the jet on the surface are easily measured. Moreover a portable apparatus has been set up and the information gathered in different laboratories will be used for a quantitative comparison of the different HPR systems. These measurements allow to study the correlation of the jet parameters with the effects (surface status, oxide formation, corrosion, etc) of the water interaction with the niobium surface. Furthermore a new analysis, based on the luminescence induced on transparent dielectric samples, is used for confirmation of the water jet structure.  
 
MOPCH170 Experimental and Theoretical Analysis of the Tesla-like SRF Cavity Flanges TTF, vacuum, TESLA, cryogenics 463
 
  • L. Monaco, P. Michelato, C. Pagani, N. Panzeri
    INFN/LASA, Segrate (MI)
  In view of the future large SC accelerator, an improvement of the reliability and a cost reduction of the SRF cavities cold flanges is required. In this paper, a critical analysis of the TESLA-like cold connection flanges at room and at cryogenic temperature is presented. This analysis is based on experimental characterization of the mechanical properties of the joint and of the leak rates during the sealing process. A FEM model, that agrees with the experimental data, is also presented. This model is being used for the optimization of the present SRF flanges and the development of new cold connections.  
 
MOPLS018 High-order Effects and Modeling of the Tevatron COSY, damping, simulation, lattice 577
 
  • P. Snopok, M. Berz
    MSU, East Lansing, Michigan
  • C. Johnstone
    Fermilab, Batavia, Illinois
  The role and degree of nonlinear contributions to machine performance is a controversial topic in current collider operations and in the design of future colliders. A high-order model has been developed of the Tevatron in COSY, which includes the strongest sources of nonlinearities. Signatures of nonlinear behavior are studied and compared with performance data. The observed nonlinear effects are compared before and after implemention of nonlinear correction schemes.  
 
MOPLS028 DAFNE Status Report luminosity, injection, feedback, interaction-region 604
 
  • A. Gallo, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, E. Di Pasquale, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, P. Iorio, C. Ligi, F. Marcellini, C. Marchetti, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, L. Quintieri, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • G. Benedetti
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • L. Falbo
    INFN-Pisa, Pisa
  • J.D. Fox, P. Raimondi, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  The operation of DAFNE, the 1.02 GeV c.m. e+e- collider of the Frascati National Laboratory with the KLOE detector, started in April 2004 has been concluded at the end of March 2006 with a total delivered luminosity of 2 fb-1 on the peak of the Phi resonance, 0.2 fb-1 off peak and a high statistics scan of the resonance. The best performances of the collider during this run have been a peak luminosity of 1.5 1032 cm-2s-1 and a daily delivered luminosity of 10 pb-1. The KLOE detector has been removed from one of the two interaction regions and its low beta section substituted with a standard magnetic structure, allowing for an easy vertical separation of the beams, while the FINUDA detector has been moved onto the second interaction point. Several improvements on the rings have also been implemented and are described together with the results of machine studies aimed at improving the collider efficiency and testing new operating conditions.  
 
MOPLS037 Beams Injection System for e+e- Collider VEPP-2000 injection, quadrupole, optics, luminosity 622
 
  • D.E. Berkaev, V.V. Druzhinin, I. Koop, A.P. Lysenko, F.V. Podgorny, V.P. Prosvetov, P.Yu. Shatunov, Y.M. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk
  Electron-positron collider VEPP-2000 is under commissioning at the Budker Institute of Nuclear Physics. The paper presents the injection system of the collider delivering the beam from the booster storage ring BEP with maximum energy 900 MeV. A matching of the beam injection with the storage ring optics is done with respect to a nonlinear kicker field. Features of beam diagnostic and transfer line magnets including pulse septums (100 mksec; 30 kGs) and fast kickers (20 nsec; 70 kV) are described. Results of the magnetic measurements and their comparison to calculated data are given.  
 
MOPLS040 Magnet Structure of the VEPP-2000 Electron-positron Collider sextupole, quadrupole, dipole, focusing 628
 
  • P.Yu. Shatunov, D.E. Berkaev, A.A. Borisov, I. Koop, N.A. Mezentsev, E. Perevedentsev, Y.M. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk
  • A. Valishev
    Fermilab, Batavia, Illinois
  Electron-positron collider VEPP-2000 with beam energy up to 1 GeV is under commissioning at Budker Institute. This paper presents magnetic elements of the storage ring including 13T focusing superconducting solenoids in interaction regions. Features of magnet elements design and magnetic measurements results are given together with comparison to previously calculated data.  
 
MOPLS041 MAD-X/PTC Lattice Design for DAFNE at Frascati survey, emittance, luminosity, lattice 631
 
  • F. Schmidt
    CERN, Geneva
  • E. Forest
    KEK, Ibaraki
  • C. Milardi
    INFN/LNF, Frascati (Roma)
  In absence of a program that takes as an input the desired or known location of the magnets in the tunnel, accelerator designers have been using MAD8/X that looks at a ring as a sequence of magnets without a connection to the tunnel. In many simple examples that is just fine, but once more complicated structures are treated one is bound to play tricks with MAD. Here PTC comes to the rescue. It is shown how pieces of this machine that exist in MAD-X format are used in PTC to create this double ring, as found in the tunnel, with a proper survey in the forward and backward direction. Special elements have been implemented in MAD-X to allow the full PTC description of the machine. It is discussed how this real PTC model differs from the 'fake' MAD-X model and how well PTC describes the real machine.  
 
MOPLS047 Design of an Asymmetric Super-B Factory emittance, luminosity, interaction-region, factory 646
 
  • J. Seeman, Y. Cai, A. Novokhatski, A. Seryi, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  Submitted for the High Luminosity Study Group for an Asymmetric Single-pass Super-B Factory: Parameters are being studied for a high luminosity e+e- collider operating at the Upsilon 4S that would deliver a luminosity of over 1036/cm2/s. This collider would use a novel combination of linear collider and storage ring techniques. In this scheme an electron beam and a positron beam are first stored in fast-damping and low-emittance damping rings, then extracted, accelerated, compressed and focused to the interaction point. After collision the two beams are decelerated and re-injected in the damping rings to be damped and extracted for collision again. The explored beam parameters are similar to those used in the design of the International Linear Collider, except for the beam energies. Design parameters for very flat beams and round beams have been studied.  
 
MOPLS055 A Lepton-proton Collider with LHC proton, lepton, luminosity, LHC 670
 
  • F.J. Willeke
    DESY, Hamburg
  • J.B. Dainton
    Cockcroft Institute, Warrington, Cheshire
  • M. Klein
    DESY Zeuthen, Zeuthen
  • P. Newman
    Birmingham University, Birmingham
  • E. Perez
    CEA, Gif-sur-Yvette
  The physics, and a design, of a Large Hadron Electron Collider (LHeC) are sketched. With high luminosity, 1033cm-2s-1, and high energy, ?s = 1.4TeV, such a collider can be built in which a 70GeV electron (positron) beam in the LHC tunnel is in collision with one of the LHC hadron beams and which operates simultaneously with the LHC. The LHeC makes possible deep-inelastic lepton-hadron (ep, eD and eA) scattering for momentum transfers Q2 beyond 106GeV2 and for Bjorken x down to the 10-6. New sensitivity to the existence of new states of matter, primarily in the lepton-quark sector and in dense partonic systems, is achieved. The precision possible with an electron-hadron experiment brings in addition crucial accuracy in the determination of hadron structure, as described in Quantum Chromodynamics, and of parton dynamics at the TeV energy scale. The LHeC thus complements the proton-proton and ion programmes, adds substantial new discovery potential to them, and is important for a full understanding of physics in the LHC energy range.

Contributed to the Open Symposium on European Strategy for Particle Physics Research, LAL Orsay, France, January 30th to February 1st , 2006. hep-ex/0603016 DESY 06-00Cockcroft-06-05

 
 
MOPLS056 QCD Explorer Proposal: E-linac versus E-ring LHC, electron, CLIC, LEP 673
 
  • H. Karadeniz
    TAEK, Ankara
  • S. Sultansoy
    Gazi University, Faculty of Science and Arts, Ankara
  TeV center of mass energy lepton-hadron collider is necessary both to clarify fundamental aspects of strong interactions and for adequate interpretation of the LHC data. Recently proposed QCD Explorer utilizes the energy advantage of the LHC proton and ion beams, which allows the usage of relatively low energy electron beam. Two options for the LHC based ep collider are possible: construction of a new electron ring in the LHC tunnel or construction of an e-linac tangentially to the LHC. In the latter case, which seems more acceptable for a number of reasons, two options are under consideration for electron linac: the CLIC technology allows shorter linac length, whereas TESLA technology gives higher luminosity.  
 
MOPLS066 Direct Measurement of Geometric and Resistive Wakefields in Tapered Collimators for the International Linear Collider SLAC, emittance, linear-collider, impedance 697
 
  • N.K. Watson, D. Adey, M.C. Stockton
    Birmingham University, Birmingham
  • D.A.-K. Angal-Kalinin, C.D. Beard, J.L. Fernandez-Hernando, F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Arnold, R.A. Erickson, C. Hast, T.W. Markiewicz, S. Molloy, M.C. Ross, S. Seletskiy, A. Seryi, Z. Szalata, P. Tenenbaum, M. Woodley, M. Woods
    SLAC, Menlo Park, California
  • R.J. Barlow, A. Bungau, R.M. Jones, G.Yu. Kourevlev, A. Mercer
    UMAN, Manchester
  • D.A. Burton, J.D.A. Smith, A. Sopczak, R. Tucker
    Lancaster University, Lancaster
  • C. Densham, G. Ellwood, R.J.S. Greenhalgh, J. O'Dell
    CCLRC/RAL, Chilton, Didcot, Oxon
  • Y.K. Kolomensky
    UCB, Berkeley, California
  • M. Kärkkäinen, W.F.O. Müller, T. Weiland
    TEMF, Darmstadt
  • N. Shales
    Microwave Research Group, Lancaster University, Lancaster
  • M. Slater
    University of Cambridge, Cambridge
  • I. Zagorodnov
    DESY, Hamburg
  • F. Zimmermann
    CERN, Geneva
  Precise collimation of the beam halo is required in the ILC to prevent beam losses near the interaction region that could cause unacceptable backgrounds for the physics detector. The necessarily small apertures of the collimators lead to transverse wakefields that may result in beam deflections and increased emittance. A set of collimator wakefield measurements has previously been performed in the ASSET region of the SLAC LINAC. We report on the next phase of this programme, which is carried out at the recently commissioned End Station A test facility at SLAC. Measurements of resistive and geometric wakefields using tapered collimators are compared with model predictions from MAFIA and GdfidL and with analytic calculations.  
 
MOPLS074 Collimation Optimisation in the Beam Delivery System of the International Linear Collider collimation, lattice, betatron, linear-collider 721
 
  • F. Jackson
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The collimation systems of the International Linear Collider (ILC) beam delivery system (BDS) must perform efficient removal of halo particles which lie outside the acceptable ranges of energy and spatial spread. An optimisation strategy is developed to improve the performance of the BDS collimation system. Primary considerations are the phase relationships between collimation systems and the final focus, and the overall bandwidth of the system.  
 
MOPLS079 The Charged Beam Dumps for the International Linear Collider linear-collider, electron, photon, TESLA 736
 
  • R. Appleby
    UMAN, Manchester
  • J.R.J. Bennett, T.A. Broome
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • C. Densham
    CCLRC/DL, Daresbury, Warrington, Cheshire
  • H. Vincke
    CERN, Geneva
  The baseline configuration of the International Linear Collider requires 2 beam dumps per interaction region, each rated to 18MW of beam power, together with additional beam dumps for tuning purposes and machine protection. The baseline design uses high pressure moving water dumps, first developed for the SLC and used in the TESLA design, although a gas based dump is also being considered. In this paper we discuss the progress made by the international community on both physics and engineering studies for the beam dumps.  
 
MOPLS088 Resonant Kicker System for Head-on-collision Option of Linear Collider kicker, electron, positron, linear-collider 759
 
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  The separation of incoming and outgoing (electron and positron) beams at the interaction point of a linear collider is investigated using a resonant kicker system. It should enable head-on-collisions at the interaction point with the use of staggered passing times for each bunch at certain locations. Magnetic core materials for such a resonant kicker with a frequency of 6MHz are under investigation. Such a kicker system should minimize the perturbation of the incoming bunch with a finite bunch length, while it kicks the outgoing bunch by more than 1 millirad. Various arrangements of such kickers along the beamlines are discussed.  
 
MOPLS107 Test of SC Undulator for ILC undulator, positron, vacuum, electron 813
 
  • A.A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  We represent details of design and results of test SC 40cm-long undulator having period 10mm and aperture ~8 mm allowing K=0.7. This undulator can be used in ILC positron conversion system.  
 
MOPLS110 ILC Linac R&D at SLAC SLAC, klystron, linac, DESY 822
 
  • C. Adolphsen
    SLAC, Menlo Park, California
  Since the ITRP recommendation in 2004 to use superconducting rf technology for a next generation linear collider, the former NLC group at SLAC has been actively pursuing a broad range of R&D for this collider (the ILC). In this paper, we review the progress of those programs relating to linac technology. These include the development of a Marx-style modulator (120 kV, 120 A, 1.5 ms, 5 Hz) and a 10 MW sheet-beam klystron, construction of an L-band (1.3 GHz) rf source using a SNS HVCM modulator and commercial klystrons, fabrication and testing of a five-cell L-band cavity prototype for the ILC positron capture accelerator, high power tests of cavity coupler components, beam tests of prototype S-band linac beam position monitors and measurements of the magnetic center stability of an ILC prototype superconducting quadrupole magnet built by the CIEMAT group in Spain.  
 
TUXPA01 Tevatron Operational Status and Possible Lessons for the LHC antiproton, optics, proton, target 900
 
  • V.A. Lebedev
    Fermilab, Batavia, Illinois
  This talk will provide an overview of the Tevatron Run II luminosity progress and plans, including SC magnet measurements and modeling of field errors in view of the LHC operation, electron cooling progress and results, slip-stacking and optimized use of the injectors for antiproton production, and improvements in the antiproton source.  
slides icon Transparencies
 
TUPCH007 High Resolution BPM for the Linear Colliders pick-up, dipole, DESY, simulation 1004
 
  • C. Simon, S. Chel, M. Luong, O. Napoly, J. Novo, D. Roudier
    CEA, Gif-sur-Yvette
  • N. Rouvière
    IPN, Orsay
  The beam-based alignment and feedback systems which are essential for the operation of the future colliders use some high resolution Beam Position Monitors (BPM). In the framework of CARE/SRF, the task of CEA/DSM/DAPNIA (Saclay) is the design, the fabrication and the beam test of a BPM in collaboration with DESY. This system is composed of a RF re-entrant cavity with a beam pipe radius of 78mm and an analog electronics having several signal processing steps to reject the monopole mode. Thanks to its high position resolution (better than 1μm) and its high time-resolution (around 10ns), it is a candidate for the X-FEL at DESY and the ILC. Indeed the chosen coupling allows the bunch to bunch measurement and the separation between the monopole and dipole modes. Moreover, this BPM is designed to be used in a clean environment, at the cryogenic and room temperatures.  
 
TUPCH043 Observations of the Longitudinal Electron Bunch Profile at 45MeV Using coherent Smith-Purcell radiation radiation, electron, background, linear-collider 1100
 
  • G. Doucas, V. Blackmore, B. Ottewell, C. Perry
    OXFORDphysics, Oxford, Oxon
  • P.G. Huggard
    CCLRC/RAL, Chilton, Didcot, Oxon
  • M.B. Johnston
    University of Oxford, Clarendon Laboratory, Oxford
  • M.F. Kimmitt
    University of Essex, Physics Centre, Colchester
  • B. Redlich, A.F.G. van der Meer
    FOM Rijnhuizen, Nieuwegein
  Coherent Smith-Purcell (SP) radiation has been used to determine the longitudinal profile of the electron bunch at the FELIX facility, FOM Institute. Far-infrared radiation was detected using a simple, compact arrangement of 11 pyroelectric detectors. Background radiation was suppressed through the use of high quality optical filters, and an efficient light collection system. The measured bunch profile was most closely in agreement with 90% of the particles contained within 5.5ps, with an approximately triangular temporal profile.  
 
TUPCH073 Study of Beam Energy Spread at the VEPP-4M betatron, diagnostics, synchrotron, scattering 1178
 
  • O.I. Meshkov, V. F. Gurko, A.D. Khilchenko, V. Kiselev, N.Yu. Muchnoi, A.N. Selivanov, V.V. Smaluk, A. N. Zhuravlev
    BINP SB RAS, Novosibirsk
  The knowledge of beam energy spread is necessary for the experimental program of the VEPP-4M collider. In this report we discuss the application of optical diagnostics for measurement of this value. The diagnostics is based on multi-anode photomultiplier and provides information about betatron and betetron frequencies of electron beam*. The beam energy spread is derived from the spectra of synchrotron oscillation. The results, obtained with this method, are compared with data, provided by Compton backscattering technique.

*O. I. Meshkov et al. Application of the beam profile monitor for VEPP-4M tuning. Proc. of DIPAC '05, June 6 - 8, 2005, Lyon, France, POM008.

 
 
TUPCH074 Fast and Precise Beam Energy Monitor Based on the Compton Backscattering at the VEPP-4M Collider photon, electron, laser, scattering 1181
 
  • N.Yu. Muchnoi, S.A. Nikitin, V.N. Zhilich
    BINP SB RAS, Novosibirsk
  Accurate knowledge of the colliding beam energies is essential for the current experiments with the KEDR \cite{KEDR} detector at the VEPP-4M collider. Now the experimental activity is focused on the new precise measurement of the tau-lepton mass by studying the behavior of the tau production cross-section near the reaction threshold. To achieve the desired quality of the experiment, an on-line beam energy monitoring by the Compton backscattering of laser light was performed. This approach is found to be a very good supplement to rare energy calibrations by the resonant depolarization technique, saving the beam time for luminosity runs. The method itself does not require electron beam polarization and additionally allows one to measure the electron beam energy spread. The achieved accuracy of the method in the beam energy range 1.7–1.9 GeV is 60 keV.  
 
TUPCH140 Studies of Thermal Fatigue Caused by Pulsed RF Heating linear-collider, controls, linac, vacuum 1343
 
  • S.V. Kuzikov, Yu. Danilov, N.S. Ginzburg, N.Yu. Peskov, M.I. Petelin, A. Sergeev, A.A. Vikharev, N.I. Zaitsev
    IAP/RAS, Nizhny Novgorod
  • A.V. Elzhov, A. Kaminsky, O.S. Kozlov, E.A. Perelstein, S. Sedykh, A.P. Sergeev
    JINR, Dubna, Moscow Region
  • I. Syratchev
    CERN, Geneva
  A future linear collider with a multi-TeV level of energies of the collided particles in the center of masses is naturally associated with high frequencies and a high power RF level. One of the interfering factors in this way is an effect of copper damage due to multi-pulse mechanical stress caused by high-power microwaves. In order to get new information about this effect, we started an experiment with the test cavity fed by 30 GHz FEM oscillator (15-30 MW, 100-200 ns, 0.5 - 1 Hz). Now we finished the second phase of this experiment where the test cavity was irradiated by 0.1 millions of RF pulses with temperature rise ~140 C in each pulse. The third phase is the experiment with 1 million pulses. In the next planned experiment with 36 GHz magnetron (0.1-0.15 MW, 1-2 mks, 0.01 - 1 kHz) we are going to investigate the thermal fatigue in most interesting for collider application region of temperatures (30-50 C). It is expected that these two experiments will supply necessary statistical information for the developed theory of the thermal fatigue in order to extrapolate lifetime numbers to other values of the temperature rise and pulse duration.  
 
TUPCH148 201 MHz Cavity R&D for MUCOOL and MICE vacuum, emittance, factory, coupling 1367
 
  • D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California
  • A. Bross, A. Moretti, B. Norris
    Fermilab, Batavia, Illinois
  • J. Norem
    ANL, Argonne, Illinois
  • H.L. Phillips, R.A. Rimmer, M. Stirbet
    Jefferson Lab, Newport News, Virginia
  • M. Reep, D.J. Summers
    UMiss, University, Mississippi
  • Y. Torun
    IIT, Chicago, Illinois
  We describe the design, fabrication and preliminary testing of the prototype 201 MHz copper cavity for a muon ionization cooling channel. Application of the cavity includes the Muon Ionization Cooling Experiment (MICE) as well as cooling channels for a neutrino factory or a muon collider. This cavity was developed by the US MUCOOL collaboration and is being tested in the MUCOOL Test Area (MTA) at Fermilab. In order to achieve a high accelerating gradient, the cavity beam irises are terminated by a pair of curved, thin beryllium windows. Several of the fabrication methods developed for this cavity and the windows are novel and offer significant cost savings compared to conventional construction methods. Cavity thermal and RF performance will be compared to FEA modeling predictions. RF commissioning results will be presented.  
 
TUPCH183 H2 Equilibrium Pressure in a NEG-coated Vacuum Chamber as a Function of Temperature and H2 Concentration LHC, vacuum, injection, instrumentation 1444
 
  • A. Rossi
    CERN, Geneva
  Non Evaporable Getter (NEG) coating is used in the LHC room- temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Gas molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the residual pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator regions for various LHC operation scenarios, corresponding to different particle loss rates and times between NEG regenerations. The results are presented in this paper and discussed.  
 
TUPLS067 Status of the HESR Electron Cooler Design Work electron, antiproton, target, gun 1648
 
  • D. Reistad, T. Bergmark, O. Byström, B. Gålnander, S. Johnson, T. Johnson, T. Lofnes, G. Norman, T. Peterson, K. Rathsman, L. Westerberg
    TSL, Uppsala
  • H. Danared
    MSL, Stockholm
  The electron energy of the HESR electron cooler shall be variable from 450 keV to 4.5 MeV. Furthermore, the design shall not exclude a further upgrade to 8 MeV. Operation of the HESR in a collider mode, which requires electron cooling of both protons and antiprotons traveling in opposite directions, is an interesting option. The status of the technical design of the HESR electron cooling system will be presented.  
 
WEXPA03 Digital Low Level RF controls, feedback, linac, CERN 1847
 
  • M.-E. Angoletta
    CERN, Geneva
  The demand on high stability and precision on the RF voltage for modern accelerators, as well as better diagnostics, maintenance and flexibility is driving the community to develop Digital Low Level RF systems (DLLRF) for the new linear accelerators, but also for synchrotrons. An overview of the state of the art in digital technologies applied to DLLRF systems and an overview of the different designs developed or in development at the different labs will be presented.  
slides icon Transparencies
 
WEYPA03 CLIC Feasibility Study in CTF3 CTF3, CLIC, linac, CERN 1862
 
  • A. Ghigo
    INFN/LNF, Frascati (Roma)
  After a reminder of the CLIC scheme towards multi-TeV Linear Collider and of the main challenges of this novel technology, the presentation will focus on the CTF3 test facility presently under construction at CERN to address all key issues in a multi-lateral collaboration. It will present the status of the facility and of the technological developments, especially the high field accelerating structures and the RF power production, the performances already achieved as well as the plans and schedule for the future. It will finally compare the CTF3 results with those foreseen by the theory and the corresponding benchmarking of CLIC simulations.  
slides icon Transparencies
 
WEXFI03 Non-linear Collimation in Linear and Circular Colliders collimation, sextupole, optics, betatron 1892
 
  • A. Faus-Golfe
    IFIC, Valencia
  • J. Resta-López, F. Zimmermann
    CERN, Geneva
  We describe the concept on nonlinear collimation of beam halo in linear and circular colliders. In particular we present the application of such a concept in two different cases: the energy collimation system for CLIC at 3 TeV c.m. energy and a betatron collimation system for LHC at 14 TeV c.m. energy. For each case, the system properties, like chromatic bandwidth, collimator survival and cleaning efficiency, are evaluated and compared with those of the corresponding linear collimation system.  
slides icon Transparencies
 
WEPCH150 The Accelerator Markup Language and the Universal Accelerator Parser lattice, quadrupole, multipole, CERN 2278
 
  • D. Sagan, M. Forster
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • D.A. Bates, A. Wolski
    LBNL, Berkeley, California
  • T. Larrieu, Y. Roblin
    Jefferson Lab, Newport News, Virginia
  • T.A. Pelaia
    ORNL, Oak Ridge, Tennessee
  • S. Reiche
    UCLA, Los Angeles, California
  • F. Schmidt
    CERN, Geneva
  • P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • N.J. Walker
    DESY, Hamburg
  A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.  
 
WEPLS007 A Six-dimensional Muon Beam Cooling Experiment emittance, dipole, simulation, beam-cooling 2409
 
  • R.P. Johnson, M. Alsharo'a, M.A.C. Cummings, M. Kuchnir, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  • V.S. Kashikhin, V. Yarba, K. Yonehara
    Fermilab, Batavia, Illinois
  Ionization cooling, a method for shrinking the size of a particle beam, is an essential technique for the use of muons in future particle accelerators. Muon colliders and neutrino factories, examples of such future accelerators, depend on the development of robust and affordable ionization cooling technologies. A 6D cooling experiment has been proposed, incorporating a novel configuration of helical and solenoidal magnets in a prototype cooling channel. This Helical Cooling Channel (HCC) experiment is being designed with simulations and prototypes to provide an affordable and striking demonstration that 6D muon beam cooling is understood well enough to enable intense neutrino factories and high-luminosity muon colliders. Because of the large amount of expected beam cooling, helium instead of hydrogen can be used for the initial experiment, avoiding the safety complications of hydrogen. Cryostats are currently being developed using internal heat exchangers for simple, effective and safe hydrogen absorber systems to use in later cooling experiments and real cooling channels. The experimental design choices and corresponding numerical simulations are reviewed.  
 
WEPLS009 Summary of the Low Emittance Muon Collider Workshop (February 6-10, 2006) emittance, proton, target, luminosity 2412
 
  • R.P. Johnson, K. Paul
    Muons, Inc, Batavia
  • V. Yarba
    Fermilab, Batavia, Illinois
  The Low Emittance Muon Collider workshop, held at Fermilab February 6-10, 2006 focused on the development of high-luminosity muon colliders using extreme muon beam cooling, where many constraints on muon collider designs are alleviated with beams of smaller emittance and lower intensity. The workshop covered topics related to proton drivers, targetry, muon capture, bunching, cooling, cooling demonstration experiments, bunch recombination, muon acceleration, collider lattices, interaction-point design, site boundary radiation, and detector concepts for energy frontier and Higgs particle studies. Lower emittance allows for a reduction in the required muon current for a given luminosity and also allows high energy to be attained by recirculating the beam through high frequency ILC RF cavities. The highlights of the workshop and the prospects for such colliders will be discussed.  
 
WEPLS012 Use of Gas-filled Cavities in Muon Capture for a Muon Collider or Neutrino Factory factory, emittance, target, focusing 2421
 
  • D.V. Neuffer
    Fermilab, Batavia, Illinois
  • K. Paul
    Muons, Inc, Batavia
  Recent studies indicate that gas-filled cavities can provide high-gradient acceleration and simultaneous cooling for muons. In this paper we explore using these cavities in the front-end of the capture and cooling systems for muon colliders and neutrino factories. For a muon collider scenario we consider capturing the beam in a low-frequency cavity (~50 MHz) and cooling immediate after capture. For a neutrino factory, we consider capturing beam in high-frequency buckets and phase-energy rotating and cooling them using gas-filled rf cavities. Scenario variants are described and studied.  
 
WEPLS018 Optics for Phase Ionization Cooling of Muon Beams emittance, focusing, resonance, space-charge 2430
 
  • R.P. Johnson
    Muons, Inc, Batavia
  • S.A. Bogacz, Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.  
 
WEPLS019 Parameters for Absorber-based Reverse Emittance Exchange of Muon Beams emittance, acceleration, betatron, scattering 2433
 
  • R.P. Johnson
    Muons, Inc, Batavia
  • Y.S. Derbenev
    Jefferson Lab, Newport News, Virginia
  The normalized longitudinal emittance of a muon beam after six-dimensional ionization cooling appears very small compared to the value that could be utilized or maintained after acceleration to muon collider energy. This circumstance offers the possibility for further reduction of the transverse emittance by introducing absorber-based reverse emittance exchange (REMEX) between longitudinal and transverse degrees of freedom before acceleration to high energy. REMEX follows Parametric-resonance Ionization Cooling and is accomplished in two stages. In the first stage the beam is stretched to fill the RF bucket at the initial cooling energy. In the second stage the beam is accelerated to about 2.5 GeV, where energy straggling begins to limit the absorber technique, and stretched again. The potential transverse emittance reduction and the intrinsic limitations of the REMEX technique have been analyzed earlier. In this report, we describe the required beam transport and RF parameters needed to achieve the maximum REMEX effect.  
 
WEPLS038 Design of Diamond-lined Accelerator Structure Test Cavity DIAMOND, CLIC, linear-collider, acceleration 2457
 
  • C. Wang, V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  • J.L. Hirshfield, M.A. LaPointe
    Yale University, Physics Department, New Haven, CT
  For a high-gradient normal-conducting accelerator structure for a future multi-TeV linear collider, the main limitation to achievement of high acceleration gradient is RF breakdown. In an attempt to increase the gradient beyond limits that are acceptable for metallic structures, a diamond-lined structure is suggested. The published DC breakdown limit for CVD diamond is ~2 GV/m, but the limit has never been determined for RF fields. Here we present a design for a 34-GHz diamond-lined rectangular test cavity, operating in the symmetric LSM-1,1,6 mode with symmetric side input couplers. The goal is to produce as high electric fields as possible (approaching 1 GV/m) at the diamond surfaces with ~10 MW of input power supplied by the Omega-P/Yale 34-GHz magnicon for experiment test of dielectric strength.  
 
WEPLS063 Laser Driven Linear Collider laser, radiation, acceleration, electron 2523
 
  • A.A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  We represent the details of scheme allowing long term acceleration with >10GeV/m. The basis of the scheme is a fast sweeping device for laser bunch. After sweeping the laser bunch has a slope with respect to the direction of propagation. So the every cell of accelerating structure becomes illuminated locally only for the moment, when the particle is there. Self consistent parameters allow considering this type of collider as a candidate for post-ILC era.  
 
WEPLS073 A Super Strong Adjustable Permanent Magnet Quadrupole for the Final Focus in a Linear Collider permanent-magnet, quadrupole, linear-collider, CERN 2550
 
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • C.M. Spencer
    SLAC, Menlo Park, California
  An adjustable permanent magnet quadrupole has been fabricated to demonstrate its feasibility for use in the final focus of a linear collider. The supposed requirements for such a final focus lens are the tight stabilities of its integrated field gradient and magnetic center, plus it must have adjustable strength. The high temperature coefficient of the permanent magnet material NEOMAX is compensated by use of the MS-1 Fe-Ni alloy. The magnet has two concentric rings of NEOMAX. The replacement of the inner ring with a smaller diameter one is planned in order to reach the highest gradient with the current configuration of the quadrupole system; the system has to be scaled down in size to fit in a real linear collider final focus system. A precise magnetic field measurement system is also under fabrication that will be able to measure the magnetic center to a fraction of a micron.  
 
WEPLS104 The Dependence of the Field Decay on the Powering History of the LHC Superconducting Dipole Magnets LHC, dipole, injection, CERN 2622
 
  • N.J. Sammut, L. Bottura, S. Sanfilippo
    CERN, Geneva
  • J. Micallef
    University of Malta, Faculty of Engineering, Msida
  The decay amplitude of the allowed multipoles in the LHC dipoles is expected to perturb the beam stability during the injection phase and is strongly dependent on the powering history of the magnet. The effect is particularly large for the pre-cycle nominal flat-top current and duration. With possible prospects of having different genres of cycles during the LHC operation, the powering history effect must be taken into account in the Field Description Model for the LHC (FIDEL) and must hence be corrected for during machine operation. This paper presents the results of the modelling of this phenomenon. We also discuss the statistic of magnetic measurements required to guarantee that the current history effect is predicted within the specified accuracy.  
 
WEPLS108 High Field Solenoid Magnets for Muon Cooling TESLA, emittance, luminosity, scattering 2634
 
  • S.A. Kahn, M. Alsharo'a, P.M. Hanlet, R.P. Johnson, M. Kuchnir, D.J. Newsham
    Muons, Inc, Batavia
  • R.C. Gupta, R. Palmer, E. Willen
    BNL, Upton, Long Island, New York
  Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in beam lines and accelerators. The specific application of interest that we are proposing is to use a very high field (of the order of 50 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS tape based on BSCCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. In this paper we will evaluate the technical issues associated with building this magnet. In particular we will address how to mitigate the high Lorentz stresses associated with this high field magnet.  
 
THPCH011 Wire Compensation of Parasitic Crossings in DAFNE luminosity, positron, simulation, injection 2808
 
  • M. Zobov, D. Alesini, C. Milardi, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk
  Long-range beam-beam interactions (parasitic crossings) are one of the main luminosity performance limitations for the Frascati e+e- Phi-factory DAFNE. In particular, the parasitic crossings (PC) lead to a substantial lifetime reduction of both beams in collision. This puts a limit on the maximum storable current and, as a consequence, on achievable peak and integrated luminosity. In order to alleviate the problem numerical and experimental studies of the PC compensation with current-carrying wires have been performed at DAFNE. Two such wires have been installed at both ends of the KLOE interaction region. Switching on the wires in accordance with the numerical predictions, improvement in the lifetime of the "weak" beam (positrons) has been obtained at the maximum current of the "strong" one (electrons) without luminosity loss. In this paper we describe the PC effects in DAFNE, summarize the results of numerical simulations on the PC compensation with the wires and discuss the experimental measurements and observations.  
 
THPCH128 Portable SDA (Sequenced Data Acquisition) with a Native XML Database controls, injection, LEFT, proton 3101
 
  • T.B. Bolshakov, E.S. McCrory
    Fermilab, Batavia, Illinois
  SDA is a general logging system for a repeated, complex process. It has been used as one of the main logging facility for the Tevatron Collider during Run II. It creates a time abstraction in terms understood by everyone and allows for common time tick across different subsystems. In this article we discuss a plan to re-implement this highly successful FNAL system in a more general way so it can be used elsewhere. Latest technologies, namely a native XML database and AJAX, are used in the project and discussed in the article.  
 
THPCH146 Solid State Modulators for the International Linear Collider (ILC) klystron, linear-collider, power-supply, controls 3131
 
  • M.A. Kempkes, N. Butler, J.A. Casey, M.P.J. Gaudreau, I. Roth
    Diversified Technologies, Inc., Bedford
  Diversified Technologies, Inc. (DTI) is developing two solid-state modulator designs for the International Linear Collider with SBIR funding from the U.S. Department of Energy. This paper will discuss design tradeoffs, energy storage requirements and alternatives, and the construction and test status of both ILC designs. The first design is a 150 kV hard switch, employing an innovative energy storage system, which must provide 25 kJ per pulse at very tight voltage regulation over the 1.5 millisecond pulse. DTI's design uses a quasi-resonant bouncer (with a small auxiliary power supply and switch) to maintain the voltage flattop, eliminating the need for massive capacitor banks. The second design builds upon earlier DTI work for the 500 kV, 500 A NLC modulators. It uses a solid-state Marx bank, with ~10 kV stages, to drive the ILC klystron. Staggered turn-on of the Marx stages provides voltage regulation without the need for large capacitor banks.  
 
THPCH147 Solid-state High Voltage Pulse Power in the 10-100 Nanosecond Regime kicker, damping, insertion, linear-collider 3134
 
  • M.A. Kempkes, F.O. Arntz, N. Butler, J.A. Casey, M.P.J. Gaudreau
    Diversified Technologies, Inc., Bedford
  New particle accelerators, with voltages exceeding 50 kV and currents exceeding 1,000 A, require kicker magnet drivers to deliver pulsed power with durations in the 10-100 ns range. Similar levels of pulse performance are needed for state-of-the-art eximer laser systems, impulse radar transmitters, and particle accelerators for medical therapy. In addition, the processing of food using pulsed electric fields (PEF processing) has similar requirements. In this paper, DTI will review solid-state pulse power technologies capable of delivering high-voltage, high-current pulses with 10-to-100 nanosecond pulse duration. IGBTs, MOSFETs, snap-off diodes, and magnetic pulse compression will be discussed. Current research at Diversified Technologies, Inc. is exploring the impact of these switching devices and circuits on pulse wave shape, pulse repeatability, adjustability of pulse voltage, current and timing, maximum pulse rate (PRF), jitter, and robustness.  
 
THPCH181 Overview of the Large Hadron Collider Cryo-magnets Logistics LHC, LEP, CERN, hadron 3221
 
  • O. Capatina, K. Artoos, R. Bihery, P. Brunero, J.M. Chevalley, L.P. Dauvergne, T. Feniet, K. Foraz, J. Francey, J.L. Grenard, M. Guinchard, C. Hauviller, K. Kershaw, S. Pelletier, S. Prodon, I. Ruehl, J. Uwumarogie, R. V. Valbuena, G. Vellut, S. Weisz
    CERN, Geneva
  More than 1700 superconducting cryo-magnets have to be installed in the Large Hadron Collider tunnel. The long, heavy and fragile LHC cryo-magnets are difficult to handle and transport in particular in the LEP tunnel environment originally designed for smaller, lighter LEP magnets. An installation rate of more than 20 cryo-magnets per week is needed to cope with the foreseen LHC installation end date. The paper gives an overview of the transport and installation sequence complexity, from the storage area at the surface to the cryo-magnet final position in the tunnel. The success of this task depends on a series of independent factors that have to be considered at the same time. The equipment needed for the transport and tunnel installation of the LHC cryo-magnets is briefly described. The manpower and equipment organisation as well as the challenges of logistics are then detailed. The paper includes conclusions and some of the lessons learned during the first phase of the LHC cryo-magnets installation.  
 
THPCH195 New Developments on Low-loss Ferroelectrics for Accelerator Applications controls, coupling, linear-collider, plasma 3251
 
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • A. Dedyk, S.F. Karmanenko
    Eltech University, St. Petersburg
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
  • V.P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  Recent results on development of BST (barium strontium titanium oxide composition) ferroelectric materials are presented to be used as the basis for new advanced technology components suitable for high-gradient accelerators. Ferroelectric materials offer significant benefits for linear collider applications, in particular, for switching and control elements where a very short response time of 10 ns can be potentially achieved. The applications include: fast active X-band and Ka-band high-power ferroelectric switches, high-power X-band, and L-band ferroelectric-based phase-shifters. The recently developed large diameter (11 cm) BST-based ferroelectric rings will be used at high pulse power (tens of megawatts) for the X-band components as well as at high average power (in the range of a few kilowatts) for the L-band phase-shifters, which are suitable for ILC applications.  
 
FRXBPA01 HERA and the Next Generation of Lepton-ion Colliders proton, luminosity, electron, lepton 3621
 
  • F.J. Willeke
    DESY, Hamburg
  This talk will present a summary of the physics insights gained from the lepton-hadron collider HERA and review major beam dynamics issues and lessons learned in view of LHC operation, including technical aspects related to the large number of superconducting magnets or the influence of various design choices on the overall machine performance. It will also address future plans for lepton-ion colliders, including eRHIC at BNL and the CEBAF-based ELIC, with emphasis on their luminosity reach and challenges. The talk will also mention possible high energy lepton-ion collisions, for example colliding a 1 TeV proton (or ion) beam from the Tevatron or Super-SPS with a 20-75 GeV electron beam from the ILC or CLIC (first stage).  
slides icon Transparencies
 
FRXCPA01 Design, Construction, Installation and First Commissioning Results of the LHC Cryogenic System cryogenics, LHC, CERN, controls 3626
 
  • S.D. Claudet
    CERN, Geneva
  The cryogenic system of the Large Hadron Collider (LHC) will be, upon its completion in 2006, the largest in the world in terms of refrigeration capacity with 140 kW at 4.5 K, distributed superfluid helium with 25 km of superconducting magnets below 2 K and cryogen inventory with 100 tons of Helium. The challenges involved in the design, construction and installation, as well as the first commissioning results will be addressed in this talk. Particular mention will be made of the problems encountered and how they were or are being solved. Perspectives for LHC will be presented. General considerations for future large cryogenic systems will be briefly proposed.  
slides icon Transparencies