

Digital Low Level RF

Maria Elena Angoletta

CERN, AB/RF June 28, 2006 Edinburgh

FPAC'06

1. Introduction

- 2. State-of-the-art: system design
- 3. State-of-the-art: algorithms
- 4. Different designs overview
- 5. Summary

1. Introduction

- Basics
- From analogue to digital
- Digital vs. analogue
- 2. State-of-the-art: system design
- 3. State-of-the-art: algorithms
- 4. Different designs overview
- 5. Summary

DLLRF = any system with important digital features

- Preferred choice for (complex) new developments.
- Prompted by accelerator requirements: performance/reliability, diagnostics, remote control, multi-user operation...

EPAC'06

- New machines with analogue LLRF:
 - □ Daresbury ERLP: soon to test DLLRF [TUPCH151, A. Moss et al.]
 - Diamond Storage Ring [TUPCH192, A. V. Watkins et al.]
 - SOLEI L: soon to become DLLRF [TUPCH186, P. Marchand et al.]

Single-Cell

Intro: analogue → digital

Figure 3: Third generation hardware for TTF-UVFEL.

Intro: digital vs. analogue

	Digital	Analogue
Implementation	Learning curve + s/w effort	Easier/known
Latency	Longer	Short
DAQ/control	I/Q sampling (also direct) or DDC	Ampli/phase , I F downconversion
Algorithms	Sophisticated. State machines, exception handling	Simple. Linear, time-invariant (ex: PID)
Multi-user	Full	Limited
Remote control & diagnostics	Easy, often no additional h/w	Difficult, extra h/w
Flexibility / reconfigurability	High (easier upgrades) [TUPCH190, S. Simrock et al.]	Limited
Drift/tolerance	No drifts, repeatability	Drift (temperature), components tolerance
Transport distance without distortion	Longer	Short
Radiation sensitivity	High	Small

M. E. Angoletta "Digital LLRF"

1. Introduction

2. State-of-the-art: system design Custom vs. COTS DSP & FPGA I/Q detection

3. State-of-the-art: algorithms

4. Different designs overview

5. Summary

SoA design: custom vs. COTS

	Custom	COTS
Development time	Longer: learning curve + high-speed digital design + s/w efforts	Shorter / easier planning
Flexibility	Can target several accelerators	Little (daughtercards help)
Obsolescence	In-house knowledge: possible design upgrade with minimal changes	Manufacturer dependence

- Most systems include custom boards.
- Inter-labs collaboration helps custom design:
 - SLAC/LBNL/INFN-Frascati: longitudinal digital feedback.
 - ORNL/LANL/LBNL: SNS linac DLLRF.

Examples: COTS: J-PARC Linac Custom: LHC (> 300 modules, 23 types).

SoA design: DSP & FPGA

Fast & complex processing

- Sequential/parallel (e.g. SIMD)
- Interrupt-driven (no RTOS), assembly/C/C++/high level

□ Faster processing + general logic

FPGA

Parallel

Proprietary/VHDL-Verilog/high level [TUPCH196, J. Molendijk et al.]

- ◆ Daughtercards → modularity
- Memory: SRAM + DRAM
- Platform: crate vs. <u>Network</u>
 <u>Attached</u> <u>Devices</u> (NAD)
- Many low-latency links (Infiniband, RapidI O, Aurora, linkports ...)

Examples: BNL, CERN.

SoA design: I/Q detection

I/Q detection, processing & control suited to DLLRF.

Digital Down Converter (DDC)

- □ FPGA-implemented (COTS: long group delay).
- □ I mproves SNR & provides data reduction.
- **\Box** Flexible & suited for high f_{REV} swings.
- Used by: CERN LEIR, SNS ring, Fermilab's Main Injector ...

I/Q sampling

- Simple/low latency scheme (special DDC case).
- Sensitive to ADC noise -> increase sample nb /synchronous period
- Used by: CERN Linac3, CESR, LHC...

1. Introduction

2. State-of-the-art: system design

3. State-of-the-art: algorithms

ImplementationModern control

4. Different designs overview

5. Summary

SoA algorithms: implementation

Biquad: PID + IIR + building block for high-order filters.

Trigonometric functions: loops + DDCs.
 FPGAs: CORDIC. DSPs: polynomial interpolation (high-resolution).

* Cascaded Integrator-Comb (CIC): DDCs

MIMO/time-varying/non linear system \rightarrow modern control techniques.

SoA algorithms: modern control

- SLC: pioneer for modern control in feedback systems (ex: adaptive cascaded feedbacks).
- □ State-space formalism: feedback design from system internal state.

M. E. Angoletta "Digital LLRF"

1. Introduction

- 2. State-of-the-art: system design
- 3. State-of-the-art: algorithms

4. Different designs overview

Cyclotrons, synchrotrons & hadron colliders APOLOGIES FOR DESIGNS HEREI NOT NENTIONED HEREI □ Linacs, FEL & linear colliders Light sources & lepton colliders

B. Summary

Cyclotrons, synchrotrons & hadron colliders

	Type	What	How
TRIUMF	Cyclotr.	Cavity amplitude loop	Motorola DSP
CERN LEIR	Synchr.	Phase/radial/synchro loops. Cavity amplitude/phase loops (2 harmonics), to be finalised	VME64x boards/daughter cards. SHARC DSPs/Stratix. Digital I/Q (CIC) + tagged clock.
FNAL Main Ring	Synchr	Phase/radial loops. Digital long./transv. bunch- by-bunch feedback.	VXI crates + SHARC DSPs; FPGAs for long/transv, feedback.
SNS Ring	Storage ring	1 ms accumulation period. Cavity controller amplitude/phase (PI). Slow cycle-to-cycle beam feedback (FEC).	EPICS + COTS PMC daughtercards (Quad SHARC DSPs).
J-PARC RCS + MR	Synchr.	High intensity beam, MA cavities & vector sum. Multi-harmonic RF generation for acceler. & shaping. Phase/radial/AVC loops. Feedforward (beam loading). [TUPCH193, A. Schnase et al. TUPCH130, F. Tamura et al.]	EPICS, FPGAs. Reflective memory. Cascaded CIC with smoothly changing coeffs.
FNAL Tevatron	Hadron collider	Phase/radial/collision point by feedforward.	VXI+SHARC DSP
RHIC	Hadron collider	Phase/radial/synchro loops with state-variable formalism.	Custom/COTS boards (SHARC DSPs).
LHC	Hadron collider	Cavity tuning + power & beam control, RF synchro & long. damping. [TUPCH195, P. Baudrenghien]	VME + TigerSHARC + FPGA. >300 modules of 23 types.

M. E. Angoletta "Digital LLRF"

Linacs, FEL & linear colliders

EINACS, FEL & IINEAI CUIILUEIS			
	Type	What	How
SNS	pulsed	GDR, NC + SC cavities. Fast feedback (PI) + adaptive feedforward. [TUPCH198, L. Doolittle et al.]	EPICS, Xilinx FPGA
VUV- FEL	pulsed	GDR + vector sum. Feedback/feedforward. [TUPCH189, W. Koprek et al.]	DSPs + gigalink channels. (SimCon3.x boards)
J- PARC	pulsed	GDR, fast feedback + resonance cavity control. Under commissioning.	EPICS, COTS cPCI ; DSP + FPGA.
CERN Linac3	pulsed	PI controller.	VME + FPGA
PEFP	pulsed	Cavity field fast feedback.	EPICS + ADI Blackfin + Xilinx FPGA.
CEBAF	СШ	GDR, single-cavity control.	VXI + Stratix FPGA.
Cornell ERL	СШ	Under way (tested @JLAB ERL). GDR, extremely high \mathcal{Q}_{L} (10 ⁷ -10 ⁸) \rightarrow small cavity BW (few Hz).	I/Q sampling. FPGAs + SHARC DSPs (as for CESR)
ISAC II	СШ	SEL controller, SC cavities. Amplitude/phase detection, I/Q control. [THPCH106, M. Laverty et al.]	Mixed analogue/digital with Motorola DSP.
ILC	Linear coll.	Implementation(s) under discussion. Field stability requirements: 0.1% amplitude, 0.1 deg phase.	Different DLLRF system being proposed.
CLIC	Linear coll.	Feasibility study. Precise phase driving field stability needed (phase). [TUPCH086, J. Sladen at al.]	DLLRF with FPGAs with fast feedforward to be used.

M. E. Angoletta "Digital LLRF"

Light sources & lepton colliders

	Type	What	How
ELETTRA + SLS	Light source	Transverse/Longitudinal bunch-by-bunch feedback.	COTS board + TI DSPs.
PEP-II	Lepton collider	NC cavities. Active cavity impedance reduction by analogue direct RF feedback + digital comb filters + digital gap feedback. Digital long. + transv. feedbacks.	EPICS, VXI , baseband processing.
KEKB	Lepton collider	SC + NC (ARES) cavities. Passive cavity impedance reduction. Digital bunch-by- bunch feedback.	COTS board + TI DSPs.
Cornell's ESR	Lepton collider	Field control system; high beam loading, feedback & feedforward.	I/Q sampling. FPGAs + SHARC DSPs.
DAFNE	Lepton collider	Digital transverse/longitudinal bunch-by- bunch feedback	AT&T DSP1610 DSP + dual-port RAM.

M. E. Angoletta "Digital LLRF"

- DLLRF has many appealing factors: diagnostics, remote-control, multi-user, complex algorithms ... difficult with analogue LLRF.
- Widespread use & preferred choice for new developments.
- Analogue LLRF used for fast loops. Technology progress will close gap soon(ish).
- Many trends h/w + s/w (standardisation?).
- ✤ Good possibilities for inter-labs collaboration.

Acknowledgments

- R. Garoby, T. Linnecar, J. Molendijk, F. Pedersen, M. Stettler, M. Vretenar, (CERN)
- K. Smith (BNL)
- F. Perez (ALBA/CELLS)
- L. Doolittle (LBNL)
- B. Chase, P. Joireman (FNAL)
- K. Fong, S. Koscelniak (TRIUMF)
- A. Drago, S. Gallo (INFN Frascati)
- A. Fabris, M. Lonza (Sincrotrone Trieste)
- E. Volger (DESY)

... & others