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Abstract

The role and degree of nonlinear contributions to ma-
chine performance is a controversial topic in current col-
lider operations and in the design of future colliders. A
high-order model has been developed of the Tevatron in
COSY Infinity [1], which includes the strongest sources of
nonlinearities. Signatures of nonlinear behavior are studied
and compared with performance data.

INTRODUCTION

The linear tune is one of the most important characteris-
tics of the linear dynamics of the particles in the accelera-
tor. In the similar way, the nonlinear tune and the nonlin-
ear tune shifts with amplitude and parameters are crucial
characteristics of the nonlinear dynamics. In this article we
obtain the nonlinear tune shifts with amplitude for the re-
cent model of the Tevatron machine [2] using the transfor-
mation to the normal form coordinates and compare them
with the results of the BPM (beam position monitors) mea-
surements. This comparison yields that by using only the
measurement data it is possible in many cases to recover
the nonlinear tune shifts which agree to the large extent
with the model predictions.

NONLINEAR TUNE SHIFT
CALCULATION

To calculate the nonlinear tune shifts with amplitude it is
necessary to employ the normal form transformation algo-
rithm derived in details in [3]. In this article we will only
briefly outline the steps of the algorithm necessary to un-
derstand the nonlinear tune shifts with amplitude and their
connection to the measured BPM data.

Normal Form Algorithm

We want to find such a nonlinear change of variables
that the motion in the new variables, up to a certain order
is circular with an amplitude-dependent frequency.

Consider the nonlinear transfer map [3–5] of a particle
optical system

�zf = M(�zi), (1)

where �z is the vector of 2v phase space coordinates.
The transformation to the normal form coordinates con-

sists of a sequence of nonlinear coordinate transformations
of the form

N = A ◦M ◦A−1. (2)
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Assume that the transformation matrix satisfies the fol-
lowing relation:

M(�0) = �0. (3)

If this does not hold, we can find the fixed point and trans-
form the map to this fixed point, therefore the new transfer
map satisfies (3). To be able to do this we assume that none
of the eigenvalues of the linear part of the map is 1, which
is always the case for stable multi-turn systems.

The first step of the transformation to the normal form
coordinates is the diagonalization of the linear part of the
map. This can only be done with the assumption that all
the 2v eigenvalues are different. For most of the cyclic
accelerators this does not resemble a limitation.

If we limit ourselves to the case of stable symplectic sys-
tems, all the eigenvalues can be written as complex conju-
gate pairs rje

±iμj , where rj = 1 and μj are real, j = 1, v.
In the basis of the complex conjugate vectors �v±j corre-
sponding to the complex conjugate eigenvalues the linear
part of the transfer map has the following form:

R =

⎛
⎜⎜⎜⎜⎜⎝

r1e
iμ1 0 · · · 0 0
0 rje

−iμ1 · · · 0 0
...

...
. . .

...
...

0 0 · · · rveiμv 0
0 0 · · · 0 rve−iμv

⎞
⎟⎟⎟⎟⎟⎠

.

(4)
After the diagonal form of the linear transfer map is

found, we proceed to a sequence of order-by-order trans-
formations, each of which affects only one order of non-
linearities. The aim of the transformation is to simplify
the nonlinear part of the transfer map as much as possible,
ideally removing all the nonlinear elements up to a certain
order.

At the mth step we divide the transfer map into the linear
partR and the part Sm, containing all the nonlinearities. If
the previous step was successful, the matrix Sm contains
only the terms of order m and higher.

The desired transformation has the form

Am = I + Tm, (5)

where Tm vanishes to order m− 1. As the linear part of A
is invertible, the map A is invertible [3], and the inverse to
order m is

A−1
m =m I − Tm. (6)

After the transformation we have up to order m:

A ◦M ◦A−1 =m

=m (I + Tm) ◦ (R+ Sm) ◦ (I − Tm) =m

=m (I + Tm) ◦ (R−R ◦ Tm + Sm) =m

=m R−R ◦ Tm + Sm + Tm ◦ R =m

=m R+ Sm + (Tm ◦ R −R ◦ Tm). (7)
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Our goal is to simplify the terms of order m of M, in
other words, we need to find Tm such that Sm = −Cm,
where Cm = (Tm ◦R−R ◦ Tm). If the range of Cm is the
full space, Sm can be removed entirely. However, there are
circumstances, limiting the range of Cm.

Nonlinear Tune Shift with Amplitude

In the case of the stable symplectic system the limiting
condition can be written as

�μ · (�k+ − �k−) = ±μj mod 2π, (8)

where the sign on the right hand side corresponds to �v±j .
Assume the equation �μ · �n = 0 mod 2π does not have

any nontrivial solutions. In this case the only way (8) can
hold is

k+
l = k−l ∀ l �= j, k+

j = k−j ± 1. (9)

A somewhat involved argument yields that in this case
the elements of the transfer map in the new coordinates
s+
1 , s−1 , . . . , s+

v , s−v corresponding to the pairs of the com-
plex conjugate eigenvectors �v±1 . . . �v±v has the form

{
M+

j = s+
j · fj(s+

1 s−1 , . . . , s+
v s−v )

M−
j = s−j · fj(s+

1 s−1 , . . . , s+
v s−v )

. (10)

It is not convenient to work with the variables s±j , there-
fore we express the resulting map in terms of the variables
t±j , such that

{
t+j = (s+

j + s−j )/2
t−j = (s+

j − s−j )/2i
, (11)

then {
s+

j = t+j + it−j
s−j = t+j − it−j

, (12)

and s+
j · s−j = (t+j )2 + (t−j )2.

For the complex conjugate s±j the values of t±j are purely
real, besides,

M±
j =

(
s+

j · fj(s+
1 s−1 , . . . , s+

v s−v )
s−j · fj(s+

1 s−1 , . . . , s+
v s−v )

)
=

=
1
2

(
1 1
−i i

)
·

=
(

fj((t+1 )2 + (t−1 )2, ..., (t+v )2 + (t−v )2)
fj((t+1 )2 + (t−1 )2, ..., (t+v )2 + (t−v )2)

)
·

·
(

1 i
1 −i

) (
t+j
t−j

)
=

= aj

(
cos(φj) − sin(φj)
sin(φj) cos(φj)

) (
t+j
t−j

)
, (13)

where fj = aj · eiφj((t
+
1 )2+(t−1 )2,...,(t+v )2+(t−v )2) and

aj = const, as we consider the symplectic motion;
φj = φj((t+1 )2 + (t−1 )2, . . . , (t+v )2 + (t−v )2) depends on
the rotationally invariant quantity.

Therefore, in the new coordinates the dynamics of the
particles is given by a rotation the frequency of which de-
pends only on the amplitudes (t+

j )2 +(t−j )2. The functions
φj for j = 1, v give the tunes of the nonlinear motion.

Figure 1: The behavior of the particles in the normal form
coordinates
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Figure 2: Displacement of the beam center of mass after a
single horizontal kick in normal form coordinates

COMPUTED DATA AND
MEASURED DATA

As the motion in the normal form coordinates resembles
a rotation with amplitude dependent phases, that allows us
to establish a strong connection between the value of the
nonlinear tune shift for some particular amplitude and the
behavior of the beam. Fig.1 shows the phase portraits of
four particles launched along a straight line in the normal
form coordinates after a certain number of turns. The par-
ticles cannot leave their respective circles, but the frequen-
cies of the rotations are different for different amplitudes.
Assume the outer particles move faster than the inner par-
ticles. In this case after a number of turns the outermost
particle will be 2π ahead in phase compared to the inner-
most particle, and as the phase dependence on the ampli-
tudes is continuous, all the particles in between the two
will have 0 < Δφj < 2π relative to the innermost particle.
That means the center of mass of the system of particles
moves toward the origin. When the outermost particle has
Δφj ≥ 2π, the beam can be considered scattered all around
the normal form phase space, and since then the center of
mass oscillates in the neighborhood of the origin with a
constant oscillation amplitude.

Hence, if we slightly displace the beam by using the hor-
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izontal or vertical kick (as it is done for the BPM orbit mea-
surements), the amplitude of the center of the displaced dis-
tribution in the normal coordinates will show damping until
the stable amplitude is reached. Once the amplitude of the
center of mass is stable, we know that the outermost parti-
cle of the distribution is 2π ahead in phase relative to the
innermost particle.

The algorithm of the normal form transformation allows
us to calculate the tune shift with amplitude explicitly up
to a desired order. Knowing the amplitudes (t+

j )2 + (t−j )2

of the outermost particle, we can plug them into the ex-
pression for the nonlinear tune shift and compare the result
with the number of turns before the beam stabilizes, using
the formula

Δμj = 2π/Nj, (14)

where Nj is the observed number of turns (see Fig.2). The
comparison for one of the latest Tevatron models [2] shows
a very good agreement between the two values. For the
instant horizontal kick of 25 MV/m at one point along
the ring the number of turns before the horizontal coordi-
nate of the center of mass stabilizes can be estimated as
2900 − 3100 turns, which corresponds to the tune shift of
2.0268 · 10−3 . . . 2.1666 · 10−3, while the calculated value
using the explicit formula for the tune shift obtained by the
normal form transformation is 2.059 · 10−3, or 3050 turns.

This result stays valid for the conventional particle op-
tical coordinates, as the value of the nonlinear tune is the
same for both the normal form coordinates and the parti-
cle optical coordinates. The transformation to the normal
form coordinates merely allows a clear and explicit calcu-
lation of the value of the tune shift, and yields the formula
suitable for various amplitudes.

If the model is a good approximation to the real machine,
the value of the nonlinear tune shift obtained by using the
number of turns necessary for the beam to stabilize after the
kick, and by the direct calculation using the model and the
normal form transformation should be very close. More-
over, if the two values do not agree, there is a strong rea-
son to double check, whether the model, or the measure-
ments are not precise enough. In the case of the Tevatron,
the model is in good agreement with the measured data.
The measurement result for the same horizontal kick of 25
MV/m is shown in Fig.3. The estimated number of turns
before the motion stabilizes is 2600 − 3200 which corre-
sponds to the tune shift of 1.9635 · 10−3 . . . 2.4166 · 10−3.

Even if we do not have a precise model, but the measure-
ments are believed to be trustful, we can make the conclu-
sion about the estimated nonlinear tune of the machine, and
the value so obtained is justified to be close to the real non-
linear tune by the normal form transformation algorithm.

SUMMARY

Summarizing the results presented in this article, we es-
tablished a connection between the calculated value of the
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Figure 3: Displacement of the beam center of mass after
a single horizontal kick in conventional coordinates, mea-
sured data

tune shift with amplitude and the results of the beam posi-
tion measurements. The connection is given by the equa-
tion (14). To calculate the value of the nonlinear tune shift,
the normal form transformation algorithm implemented in
COSY Infinity beam dynamics calculation and optimiza-
tion code was employed. The main steps of the algorithm
itself could be found in this article, for more details see [3].

The comparison of the measured and calculated data
strongly suggests that even if there is no model of the ma-
chine reliable enough at hand to calculate the exact value
of the nonlinear tune shift, the approximate value can be
obtained by analyzing the behavior of the measured data.

The method of finding the approximate value of the non-
linear tune shift using the performance data was tested
on the recent Tevatron accelerator beam position measure-
ments and showed the validity of the proposed technique
for this particular machine.

REFERENCES

[1] M. Berz. COSY INFINITY version 8.1 user’s guide and
reference manual. Department of Physics and Astronomy
MSUHEP-20704, Michigan State University, 2002.

[2] Michael A. Martens. Tevatron Lattice Page at www.fnal.gov.

[3] M. Berz. Modern Map Methods in Particle Beam Physics.
Academic Press, 1999.

[4] M. Berz. Introduction to beam physics. Lecture Notes. Vir-
tual University Beam Physics Course.

[5] P. Snopok, C. Johnstone, and M. Berz. Simulation and op-
timization of the Tevatron accelerator. In H. M. Bücker,
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