A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

lepton

 
Paper Title Other Keywords Page
MOPLS038 Beam Energy Calibration in Experiment on Precise Tau Lepton Mass Measurement at VEPP-4M with KEDR Detector energy-calibration, resonance, polarization, electron 625
 
  • A. Bogomyagkov, V.E. Blinov, S. Karnaev, V. Kiselev, E.V. Kremyanskaya, E. Levichev, O.I. Meshkov, S.I. Mishnev, I. Morozov, N.Yu. Muchnoi, S.A. Nikitin, I.B. Nikolaev, A.G. Shamov, D.N. Shatilov, E.A. Simonov, A.N. Skrinsky, V.V. Smaluk, Yu.A. Tikhonov, G.M. Tumaikin, V.N. Zhilich
    BINP SB RAS, Novosibirsk
  Experiment on mass measurement of tau lepton requires an absolute energy calibration. The resonant depolarization technique is used for most accurate (1 keV) but once at a time energy calibration. The measured energy is used for calibration of the germanium detector for Compton backscattering energy monitoring. The developed Compton backscattering facility allows continuous energy monitoring with accuracy of 50 keV for 10 minutes of data acquisition. The tau lepton threshold is in the vicinity of integer spin resonance, which minimizes polarization lifetime in the presence of vertical orbit distortions. Therefore, spin matching of the VEPP-4M is required. The achieved lifetime is sufficient for absolute energy calibration.  
 
MOPLS054 On Increasing the HERA Luminosity luminosity, proton, optics, electron 667
 
  • Y.A. Kot, F.J. Willeke
    DESY, Hamburg
  The luminosity of the HERA lepton proton collider is limited in part by the bunch length of the protons of 20cm. This limitation is expected to be removed by the installation of a new damper system which will control longitudinal coupled bunch instabilities of the proton beam and avoid the bunch lengthening of a factor of two. This opens the possibility for increasing the luminosity HERA since the beta functions at IP for both leptons and protons can be lowered by about 20% without noticeable reduction of the corresponding luminosity by the so-called hour-glass effect. The beam spot size can be further reduced if the beam-beam focusing of the leptons (dynamic beta) at IP is increased by softening the rigorous beam beam-beta beat compensation which is accomplished by proper phasing of the two IP's. Unfortunately the non-linear chromaticity compensation would be weakened as well, which will cause an enhancement of the synchro-betatron resonances and may lead to poor lifetime and poor background conditions. Therefore, the non-linear chromaticity needs to be reduced by means of a more complex scheme of chromaticity compensating sextupole magnets.  
 
MOPLS055 A Lepton-proton Collider with LHC proton, luminosity, LHC, collider 670
 
  • F.J. Willeke
    DESY, Hamburg
  • J.B. Dainton
    Cockcroft Institute, Warrington, Cheshire
  • M. Klein
    DESY Zeuthen, Zeuthen
  • P. Newman
    Birmingham University, Birmingham
  • E. Perez
    CEA, Gif-sur-Yvette
  The physics, and a design, of a Large Hadron Electron Collider (LHeC) are sketched. With high luminosity, 1033cm-2s-1, and high energy, ?s = 1.4TeV, such a collider can be built in which a 70GeV electron (positron) beam in the LHC tunnel is in collision with one of the LHC hadron beams and which operates simultaneously with the LHC. The LHeC makes possible deep-inelastic lepton-hadron (ep, eD and eA) scattering for momentum transfers Q2 beyond 106GeV2 and for Bjorken x down to the 10-6. New sensitivity to the existence of new states of matter, primarily in the lepton-quark sector and in dense partonic systems, is achieved. The precision possible with an electron-hadron experiment brings in addition crucial accuracy in the determination of hadron structure, as described in Quantum Chromodynamics, and of parton dynamics at the TeV energy scale. The LHeC thus complements the proton-proton and ion programmes, adds substantial new discovery potential to them, and is important for a full understanding of physics in the LHC energy range.

Contributed to the Open Symposium on European Strategy for Particle Physics Research, LAL Orsay, France, January 30th to February 1st , 2006. hep-ex/0603016 DESY 06-00Cockcroft-06-05

 
 
WEPLS056 R&D Status of the High-intense Monochromatic Low-energy Muon Source: PRISM simulation, impedance, synchrotron, focusing 2508
 
  • A. Sato, M. Aoki, Y. Arimoto, I. Itahashi, Y. Kuno, K. Kuriyama, T. Oki, T. Takayanagi, M. Yoshida
    Osaka University, Osaka
  • M. Aiba, C. Ohmori, T. Yokoi, K. Yoshimura
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Mori
    KURRI, Osaka
  PRISM is a project of a future intense low-energy muon source, which combines monochromaticity and high purity. Its aimed intensity is about $1011-1012 muons per second. The muon beams will have a low kinetic energy of 20MeV so that it would be optimized for the stopped muon experiments such as searching the muon lepton flavor violating processes. PRISM consists of a pion capture section, a pion/muon transfer section and a phase rotation ssection. An FFAG is used as the phase rotator to achieve the monochromatic muon beams. This paper will describe design status of these sections as well as construction status of PRISM-FFAG.  
 
FRXBPA01 HERA and the Next Generation of Lepton-ion Colliders proton, luminosity, electron, collider 3621
 
  • F.J. Willeke
    DESY, Hamburg
  This talk will present a summary of the physics insights gained from the lepton-hadron collider HERA and review major beam dynamics issues and lessons learned in view of LHC operation, including technical aspects related to the large number of superconducting magnets or the influence of various design choices on the overall machine performance. It will also address future plans for lepton-ion colliders, including eRHIC at BNL and the CEBAF-based ELIC, with emphasis on their luminosity reach and challenges. The talk will also mention possible high energy lepton-ion collisions, for example colliding a 1 TeV proton (or ion) beam from the Tevatron or Super-SPS with a 20-75 GeV electron beam from the ILC or CLIC (first stage).  
slides icon Transparencies