A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

hadron

Paper Title Other Keywords Page
MOPCH165 Low- and Intermediate-beta, 352 MHz Superconducting Half-wave Resonators for High Power Hadron Acceleration proton, acceleration, linac, vacuum 448
 
  • A. Facco, F. Scarpa, D. Zenere
    INFN/LNL, Legnaro, Padova
  • R. Losito
    CERN, Geneva
  • V. Zviagintsev
    TRIUMF, Vancouver
  A beta=0.17, 352 MHz superconducting Half-Wave resonator was designed and constructed at INFN-LNL in the framework of the SPES and EURISOL projects. This cavity, together with the beta=0.31 HWR of similar design that was previously built in the framework of the SPES project, allows acceleration of high power hadron beams in the 5?100 MeV/u energy range, as required in the SPES primary linac and in the first part of the EURISOL proton driver. Main features of this structure, compared to other ones developed elsewhere with different geometries for similar applications, are compactness and mechanical stability. Characteristics and test results will be presented.  
 
MOPLS004 Estimation and Analysis of the Machine-induced Background at the TOTEM Roman Pot Detectors in the IR5 of the LHC LHC, background, optics, simulation 535
 
  • V. Talanov
    IHEP Protvino, Protvino, Moscow Region
  • V. Avati
    Helsinki University, Department of Physics, University of Helsinki
  • M. Deile, D. Macina
    CERN, Geneva
  The problem of background generation in the experimental insertion IR5 of the LHC during machine operation in the dedicated TOTEM mode with low intensity beams and the specially designed beta* = 1540 m optics is discussed. The sources of the machine-induced background in the IR5 forward physics areas are identified and their relative importance is evaluated. The results of the background simulation in the IR5 are presented, based on the most recent estimates of the residual gas density for TOTEM beam conditions. The methods for background analysis and rejection are explained.  
 
TUPCH182 Radiation Monitors as a Vacuum Diagnostic in the Room Temperature Parts of the LHC Straight Sections radiation, LHC, vacuum, background 1441
 
  • V. Talanov
    IHEP Protvino, Protvino, Moscow Region
  • V. Baglin, T. Wijnands
    CERN, Geneva
  In the absence of collisions, inelastic interactions between protons and residual gas molecules are the main source of radiation in the room temperature parts of the LHC long straight sections. In this case the variations in the radiation levels will reflect the dynamics of the residual pressure distribution. Based on the background simulations for the long straight section of the LHC IP5 and on the current understanding of the residual pressure dynamics, we evaluate the possibility to use the radiation monitors for the purpose of the vacuum diagnostic, and we present the first estimates of the predicted monitor counts for different scenarios of the machine operation.  
 
WEPCH158 Status of the Hadrontherapy ETOILE-Project in Lyon proton, ion, radiation, GSI 2299
 
  • M.J. Bajard
    UCBL, Villeurbanne
  The ETOILE project is the French program for carbon ion beams in cancer treatment. It is now in the final phase. However its development is not only aiming at the building of a medical facility, around the project a broad set of medical and scientific programs have been initiated. The project has been supported by the University of Lyon and extended to the Rhône-Alpes Region and then gained a national visibility with governmental recognition. Many studies have been financed by ETOILE: in beam PET with new solutions, organ motion modelization, tumor cell radioresistance, medico-economical simulation and epidemiological previsions. The facility will be able to produce carbon ion beams and protons. Three treatment rooms are planned, two with horizontal beams and one with an isocentric gantry. The facility will be build in Lyon, through a process using as much as possible well established technology with the other facilities in Europe. The cost will be around 105 M€ afforded by loans and subventions. The subventions are funded from the Rhône-Alpes Region, the city of Lyon and the ministries of Health and Research. The running cost of the centre, for one thousand patients per year, is estimated to be 21 M€.  
 
WEPCH180 A Dramatically Reduced Size in the Gantry design for the Proton-Carbon Therapy betatron, focusing, dipole, quadrupole 2352
 
  • D. Trbojevic, R.C. Gupta, B. Parker
    BNL, Upton, Long Island, New York
  • E. Keil
    CERN, Geneva
  • A. Sessler
    LBNL, Berkeley, California
  Gantries in the proton/carbon cancer therapy machines represent the major cost and are usually very large. This report explains a new way for the gantry design. The size and cost of the gantries are reduced, and their use is simplified by using the fixed magnetic field. The "new" gantry is made of a very large momentum acceptance non-scaling Fixed Field Alternating Gradient (FFAG) quarter and half arc beam lines. The gantry is made of combined function magnets with a very strong focusing and small dispersion function. Additional magnets with a fast response are required to allow adjustments of the beam position for different energies at the beginning of the gantry. The strong focusing magnets following the gantry have to be adjustable as well to provide the required spot size. The adjustable dipoles provide the radial scanning. The fixed field combined function magnets could be made of small permanent magnets for the proton machine, or of the high temperature superconductors or superconductors for the carbon machine, reducing dramatically the size.  
 
THPCH181 Overview of the Large Hadron Collider Cryo-magnets Logistics LHC, LEP, CERN, collider 3221
 
  • O. Capatina, K. Artoos, R. Bihery, P. Brunero, J.M. Chevalley, L.P. Dauvergne, T. Feniet, K. Foraz, J. Francey, J.L. Grenard, M. Guinchard, C. Hauviller, K. Kershaw, S. Pelletier, S. Prodon, I. Ruehl, J. Uwumarogie, R. V. Valbuena, G. Vellut, S. Weisz
    CERN, Geneva
  More than 1700 superconducting cryo-magnets have to be installed in the Large Hadron Collider tunnel. The long, heavy and fragile LHC cryo-magnets are difficult to handle and transport in particular in the LEP tunnel environment originally designed for smaller, lighter LEP magnets. An installation rate of more than 20 cryo-magnets per week is needed to cope with the foreseen LHC installation end date. The paper gives an overview of the transport and installation sequence complexity, from the storage area at the surface to the cryo-magnet final position in the tunnel. The success of this task depends on a series of independent factors that have to be considered at the same time. The equipment needed for the transport and tunnel installation of the LHC cryo-magnets is briefly described. The manpower and equipment organisation as well as the challenges of logistics are then detailed. The paper includes conclusions and some of the lessons learned during the first phase of the LHC cryo-magnets installation.