A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

interaction-region

Paper Title Other Keywords Page
MOPCH102 A Straight Section Design in RHIC to Allow Heavy Ion Electron Cooling electron, RHIC, dipole, quadrupole 279
 
  • D. Trbojevic, J. Kewisch, W.W. MacKay, T. Roser, S. Tepikian
    BNL, Upton, Long Island, New York
  The Relativistic Heavy Ion Collider (RHIC) has been continuously producing exciting results. One of the major luminosity limitations of the present collider is the intra beam scattering. A path towards the higher luminosities requires cooling of the heavy ion beams. Two projects in parallel electron and stochastic cooling are progressing very well. To allow interaction between electrons and the RHIC beams it is necessary to redesign one of the existing interaction regions in RHIC to allow for the longer straight section with fixed and large values of the betatron functions. We present a new design of the interaction region for the electron cooling in RHIC.  
 
MOPLS028 DAFNE Status Report luminosity, injection, collider, feedback 604
 
  • A. Gallo, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, E. Di Pasquale, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, P. Iorio, C. Ligi, F. Marcellini, C. Marchetti, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, L. Quintieri, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • G. Benedetti
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • L. Falbo
    INFN-Pisa, Pisa
  • J.D. Fox, P. Raimondi, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  The operation of DAFNE, the 1.02 GeV c.m. e+e- collider of the Frascati National Laboratory with the KLOE detector, started in April 2004 has been concluded at the end of March 2006 with a total delivered luminosity of 2 fb-1 on the peak of the Phi resonance, 0.2 fb-1 off peak and a high statistics scan of the resonance. The best performances of the collider during this run have been a peak luminosity of 1.5 1032 cm-2s-1 and a daily delivered luminosity of 10 pb-1. The KLOE detector has been removed from one of the two interaction regions and its low beta section substituted with a standard magnetic structure, allowing for an easy vertical separation of the beams, while the FINUDA detector has been moved onto the second interaction point. Several improvements on the rings have also been implemented and are described together with the results of machine studies aimed at improving the collider efficiency and testing new operating conditions.  
 
MOPLS047 Design of an Asymmetric Super-B Factory collider, emittance, luminosity, factory 646
 
  • J. Seeman, Y. Cai, A. Novokhatski, A. Seryi, M.K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
  • M.E. Biagini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  Submitted for the High Luminosity Study Group for an Asymmetric Single-pass Super-B Factory: Parameters are being studied for a high luminosity e+e- collider operating at the Upsilon 4S that would deliver a luminosity of over 1036/cm2/s. This collider would use a novel combination of linear collider and storage ring techniques. In this scheme an electron beam and a positron beam are first stored in fast-damping and low-emittance damping rings, then extracted, accelerated, compressed and focused to the interaction point. After collision the two beams are decelerated and re-injected in the damping rings to be damped and extracted for collision again. The explored beam parameters are similar to those used in the design of the International Linear Collider, except for the beam energies. Design parameters for very flat beams and round beams have been studied.  
 
MOPLS077 The 2mrad Crossing Angle Interaction Region and Extraction Line extraction, optics, quadrupole, beam-transport 730
 
  • R. Appleby
    UMAN, Manchester
  • D.A.-K. Angal-Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, O. Dadoun
    LAL, Orsay
  • J. Carter
    Royal Holloway, University of London, Surrey
  • L. Keller, K. C. Moffeit, Y. Nosochkov, A. Seryi, C.M. Spencer
    SLAC, Menlo Park, California
  • O. Napoly
    CEA, Gif-sur-Yvette
  • B. Parker
    BNL, Upton, Long Island, New York
  A complete optics design for the 2mrad crossing angle interaction region and extraction line was presented at Snowmass 2005. Since this time, the design task force has been working on developing and improving the performance of the extraction line. The work has focused on optimising the final doublet parameters and on reducing the power losses resulting from the disrupted beam transport. In this paper, the most recent status of the 2mrad layout and the corresponding performance are presented.  
 
WEPCH044 Interaction Region with Slim Quadrupoles quadrupole, LHC, luminosity, beam-beam-effects 2014
 
  • E. Laface, R. Ostojic, W. Scandale, D. Tommasini
    CERN, Geneva
  • C. Santoni
    Université Blaise Pascal, Clermont-Ferrand
  An optical performance's improvement of the interaction region can be obtained with the addition of new quadrupoles in the forward detectors area. Such scenario would allow decreasing the $β*$ below the nominal value. The basic concept consists in using quadrupoles to break the quadratic behavior of $β$ in the free space between the IP and the IR triplets. In this new configuration we present the performance improvements and the hardware requirements.  
 
WEPLS109 Test Results of Fermilab-built Quadrupoles for the LHC Interaction Regions LHC, quadrupole, alignment, target 2637
 
  • M.J. Lamm, R. Bossert, J. DiMarco, SF. Feher, A. Hocker, J.S. Kerby, A. Nobrega, I. Novitski, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, J. Tompkins, G. Velev, A.V. Zlobin
    Fermilab, Batavia, Illinois
  The US-LHC Accelerator Project has recently completed the manufacturing and testing of the Q2 optical elements for the LHC interaction region final focus. Each Q2 element consists of two identical quadrupoles (MQXB) with a dipole orbit corrector (MQXB). The Fermilab designed MQXB has a 70 mm aperture and a peak operating gradient of 215 T/m. This paper summarizes the test results for the MQXB program with emphasis on quench performance and alignment studies.  
 
THPCH086 Design of a Local IP Orbit Feedback at HERA-e electron, feedback, proton, controls 2988
 
  • J. Keil, O. Kaul, E. Negodin, R. Neumann
    DESY, Hamburg
  At the electron-proton collider HERA it is often observed that the proton emittance growth rate of colliding bunches is larger compared to non-colliding proton bunches. In addition the proton background rates are increasing when the two beams are brought into collision. There are indications that a contribution comes from closed orbit oscillations of the electron beam at the two IPs. In the arcs of HERA-e oscillation amplitudes of 100-200 micrometer with frequencies of 2-15 Hz and harmonics of 50 Hz are observed. In order to stabilize the orbit at the IPs in both planes a local digital orbit feedback system with a bandwidth of more than 20 Hz has been developed. The beam position at the IPs is measured with BPMs using dedicated electronics. The four local orbit bumps are produced by air-coil steerer magnets. The data are transmitted using SEDAC field bus lines to a central PC, which is used for the computation of the correction.