A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

beam-cooling

Paper Title Other Keywords Page
MOPCH088 Ion Cooler Storage Ring, S-LSR laser, ion, electron, proton 237
 
  • A. Noda, S. Fujimoto, M. Ikegami, T. Shirai, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • H. Fadil, M. Grieser
    MPI-K, Heidelberg
  • T. Fujimoto, S.I. Iwata, S. Shibuya
    AEC, Chiba
  • I.N. Meshkov, I.A. Seleznev, A.V. Smirnov, E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
  Ion cooler and storage ring, S-LSR has been constructed. Its beam commissioning has been successfully performed since October, 2005 and electron beam cooling for 7 MeV proton beam has been performed with both flat and hollow spatial distributions. Effect of relative velocity sweep between electron and ion beams on the cooling time* has been confirmed. Based on the success to create the peaks in the energy spectrum of laser-produced ions, injection of laser-produced ions into S-LSR after rotation in the longitudinal phase space by an RF cavity synchronized to the pulse laser is under planning in order to apply electron cooling for such real laser produced hot ions. Three dimensional laser cooling satisfying the condition of 'tapered cooling' is also under investigation. 24Mg+ ions are to be laser-cooled only in the 'Wien Filter' in order to be cooled down to the appropriate energy according to their horizontal positions**. In parallel with the computer simulation, construction of the laser cooling system with use of ring dye laser accompanied with the second harmonics generator is now underway.

*H. Fadil et al. Nucl. Instr. & Meth. in Phys. Res. A517, 1-8 (2004).**A. Noda and M. Grieser, Beam Science and Technology, 9, 12-15 (2005).

 
 
WEPLS007 A Six-dimensional Muon Beam Cooling Experiment emittance, dipole, collider, simulation 2409
 
  • R.P. Johnson, M. Alsharo'a, M.A.C. Cummings, M. Kuchnir, K. Paul, T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  • V.S. Kashikhin, V. Yarba, K. Yonehara
    Fermilab, Batavia, Illinois
  Ionization cooling, a method for shrinking the size of a particle beam, is an essential technique for the use of muons in future particle accelerators. Muon colliders and neutrino factories, examples of such future accelerators, depend on the development of robust and affordable ionization cooling technologies. A 6D cooling experiment has been proposed, incorporating a novel configuration of helical and solenoidal magnets in a prototype cooling channel. This Helical Cooling Channel (HCC) experiment is being designed with simulations and prototypes to provide an affordable and striking demonstration that 6D muon beam cooling is understood well enough to enable intense neutrino factories and high-luminosity muon colliders. Because of the large amount of expected beam cooling, helium instead of hydrogen can be used for the initial experiment, avoiding the safety complications of hydrogen. Cryostats are currently being developed using internal heat exchangers for simple, effective and safe hydrogen absorber systems to use in later cooling experiments and real cooling channels. The experimental design choices and corresponding numerical simulations are reviewed.