Keyword: pulsed-power
Paper Title Other Keywords Page
TUP274 Oak Ridge National Laboratory Spallation Neutron Source Electrical Systems Availability and Improvements kicker, extraction, injection, site 1337
 
  • R.I. Cutler, D.E. Anderson, W.E. Barnett, J.D. Hicks, J.J. Mize, J. Moss, K. Norris, V.V. Peplov, K.R. Rust, J. T. Weaver
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for ac electrical systems, dc and pulsed power supplies and klystron modulators
 
 
WEP243 Status of the Neutralized Drift Compression Experiment (NDCX-II) induction, ion, solenoid, target 1939
 
  • W.L. Waldron, J.W. Kwan
    LBNL, Berkeley, California, USA
 
  Funding: This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.
The Neutralized Drift Compression Experiment (NDCX-II) is an induction accelerator project currently in construction at Lawrence Berkeley National Laboratory for warm dense matter (WDM) experiments investigating the interaction of ion beams with matter at high temperature and pressure. The machine consists of a lithium injector, induction accelerator cells, diagnostic cells, a neutralized drift compression line, a final focus solenoid, and a target chamber. The machine relies on a sequence of acceleration waveforms to longitudinally compress the initial ion pulse from 600 ns to less than 1 ns in ~ 12 meters. Radial confinement of the beam is achieved with 2.5 T solenoids. In the initial hardware configuration, 30-50 nC of Li+ will be accelerated to 1.2 MeV and allowed to drift-compress to a peak current of ~ 20 A. Construction of the accelerator will be completed in the summer of 2011 and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers. The basic design of the machine and the current status of the construction project will be presented.