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Abstract MICE Target(/| (| \\iV;/
The Muon lonisation Cooling Experiment (MICE) aims ~ L/j Nt

to demonstrate the transverse cooling of muons for a fu- 3 Rid

ture Neutrino Factory or Muon Collider. The diffuser is an Y & %/Po,n Capture

integral part of the MICE beamline. It aims to inflate the
emittance of the incoming beam such that cooling can later :
be measured in MICE. A new diffuser design is in devel- . ~
opment at Oxford, consisting of a sequence of high density -~
scatterers of variable radiation lengths. Simulationsshav

been carrle_d out in o_rder to unde_rstand fully the phySIClgigure 1. The MICE beamline. The diffuser is located in-
processes involved with the new diffuser design and to en-

able a proper matching of the beam to the MICE cooliné'de the entrance of the first spectrometer soleridid.

channel.
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THE MICE DIFFUSER
INTRODUCTION

) ) To demonstrate ionisation cooling, the MICE beamline
A future neutrino factory requires a cooled muon bear, ¢ supply a wide variety of input muon beams for the ex-

for maximum acceptance into its downstream acceler%’eriment The beam is tunable between 140 — 240 MeV/c
tors [1, 2]. This is especially important if the facility is longitudinal momentumyp., and 1 — 12¢)mmrad nor-
to be the starting point for a muon collider, which require$,,4jised transverse emittanes;.

cooling to reach its design luminosity. However, due to the
short muon lifetime, conventional beam cooling method%
are unsatisfactory.

lonisation cooling was first explored many year
ago [3] - [7]. The transverse phase space of the beam is
duced by passing it through a low Z medium such as liqui
hydrogen to minimise multiple scattering. lonisation ks
in the material reduce the overall momentum of the bea

The muon beam is created by dipping a titanium target
to the 800MeV proton beam at ISIS, RAL. This produces
ions, which are transported down the MICE beamline [10]
here they decay into muons. Figure 1 shows the beam-
E?fe, the position of the diffuser and other key components.
The final component of the MICE beamline is the dif-
fuser. This sits just inside the first spectrometer solenoid
rEf’he diffuser is designed to increase the transverse emit-

which is then re-accelerated to restore its longitudinal m ance of the muon beam in a controlled manner. The beam
mentum. Although it is the most promising technique fo X : '
is then cooled in the MICE cooling channel.

cooling muon beams, ionisation cooling has not yet been he diff initiall ved lecti flead
demonstrated experimentally. The diffuser was initially conceived as a selection of lea

discs, of different thickness, that could be inserted ihto t
beam path. This design has been studied both with respect
_ _ _ _ ~ to its position within the first spectrometer solenoid, and
1. To design, engineer, and build one section of coolingy matching beams through the diffuser into the tracker re-
channel suitable for a Neutrino Factory [8]. gion [11]. However, the diffuser must operate in the fringe
. . fiFId of a 4T solenoid magnet. This precludes the use
2. To measure the cooling performance of this channe . : .
. : f electric motors and other magnetic components, which
under a variety of operating modes and beam condi- S L .
tions made the initial diffuser design impractical to manufaetur
' A new diffuser design has recently been approved by the
A muon beam is passed through a series of absorbayBCE collaboration. This simplifies the mechanisms man-
followed immediately by accelerating RF cavities, as deafacture and operation, and improves the range of beam
scribed in [9]. This is expected to reduce the transversemittances provided.
emittance of the beam by 10%. The MICE experiment A schematic of the approved design can be seen in Fig-
is currently under construction at the Rutherford Appletofyre 2 . The new MICE diffuser consists of a stainless steel

The Muon lonisation Cooling Experiment (MICE) is a
proof-of-principle device with two primary aims:

Laboratory (RAL), UK. drum which is inserted into the upstream section of the
*On behalf of the MICE collaboration first spectrometer solenoid magnet. The drum contains four
v.blackmore1@physics.ox.ac.uk irises, whose materials and thicknesses are listed in Table

Advanced Concepts and Future Directions

154 Accel/Storage Rings 09: Muon Accelerators and Neutrino Factories



Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA MOP023

a) All

= AE <10 MeV

o . « AE>20 MeV

28 < AE < 50 MeV

E r
E150F

100f

Beam C
Direction -50[—

Irises (4)

Optical Sensors (4) Actuators (4)

150

Figure 2: The re-designed MICE diffuser. Four irises are T BT | B T T

contained within a stainless steel drum, which operate in x (mm)
the fringe field of a 4T solenoid magnet.

Figure 4: a) Muons passing through one diffuser iris, with
all other irises open. The average expected energy loss for

Table 1. Diffuser Iris Materials and Thicknesses this diffuser setting is¢ 15 MeV. b) A muon crossing two

Iris | Material | Thickness (mm) diffuser segments.

1 Brass 2.97

2 Brass 5.94 iris, and the joints between its segments, at an angle.

3 | Tungsten 2.80 Figure 4 demonstrates the amount of energy lost b
4 | Tungsten 5.60 9 gy y

muons as a function of their positiofx;, v), when they tra-
verse an iris. This example shows one iris closed whilst the
est are open with their material stowed in the outer region.
he majority of muons crossing the diffuser with< 100
m lose the expected amount of energy. However, about
% of particles lose significantly more or less energy than

These materials were chosen to provide a total of 3 radi
tion lengths, X, of material in steps of.2X,. Each iris
is operated by a non-magnetic, air-driven, actuator and i

status is monitored by a set of optical sensors. - .
y P expected. This is due to them crossing the area where-two

An iris consists of two planes of four ‘segments’, off- ; - )
. . sets of segments meet, as illustrated in Figure 4b. This-ef-
set with respect to each other, surrounded by a Tufnol ri . - . S
ct is negligible when using multiple irises together.

Figure 3). When closed, the iris presents a ‘solid’ piece . . o
gf ?nateria)il to the muon beam withpa radits= 100 mn? The overall radius of the diffuser is limited by the apei-
' re size of the spectrometer solenoid. As such, prob-

When open, the iris material is stowed outside this radius, .
within the Tufnol ring. ems can arise when a large, low momentum muon béam

is passed through a single iris. In this case, a proportion
of the beam lies in the outer region of the diffuser where
PHYSICSPERFORMANCE excess diffuser material is stowed. This is shown by the
The impact of a segmented diffuser disc was investigatr;rﬁd pomts_ |n_F_|gure 4 at > 100 mm. Thes_e MUONs pass
through significantly more material than intended, whigh

using a simplified model with the GAMICE software [12]. ) _ ! P
Although a closed iris presents a solid face to the muo?lhomd be considered when choosing apprapriate diffgger

beam, muons follow a helical trajectory in a magnetic fielgSetings.
Hence, a proportion of muons will encounter the diffuser

BEAM MATCHING

Iris Closed

> |ris Open

Introducing material into the beamline changes the ap-
tical functions of the beam. As the new diffuser mecha-
nism is made from a series of different materials, previ-
ously derived beam matching settings [11] are insufficient.
Additionally, the new design provides further flexibility i
terms of input emittances for the MICE cooling chanriel.
This raises several questions to be addressed. For exam-
ple, finding the correct input beam given a fixed diffuser,
or finding a diffuser setting that best matches the beam(into
Figure 3: A diffuser iris being opened. When open, althe MICE cooling channel.

material is stowed within the Tufnol ring. A set of tools are in development that will allow the beam
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Figure 5: Comparison of beta function evolution between 0

the numerical beam evolver and the G4MICE simulation.
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to be matched in real time, based upon the evolution equa-
tions of [13]. This assumes that the beam is monochro-
matic inp, and cylindrically symmetric. Figure 5 com-
pares the resultant; function through 15.6 mm of lead
with a GAMICE Monte Carlo model. There are some small
discrepancies between the analytic evolution of the beam 2 (mm)
optical functions and those found with GAMICE. This is
due to the assumption of a constant rate of energy #8ss, ) ) )
as a muon crosses the material. Nevertheless, the evolutfoigure 6: The emittance;,y, and5-function evolution of -
of the optical functions provides a good description for anft Pam crossing the 1st and 3rd iris of the new MICE dif-
subsequent re-matching of the beam to the MICE Coonn%ser, which is matched into the first spectrometer solenoid
channel. module.

For optimum performance, the MICE cooling channel
requires the beam is matcheddo= 0, 8 = gfz5- mm  [3] A. Skrinsky and V. Parkhomchuk, “Cooling Methods for
at the centre of the tracker contained in the first spectrom- Beams of Charged Particles”, Sov. J. Part. Nucl. 12 (1981)
eter solenoid module. Given a set diffuser configuration — 223
for example, using only the first and third irises — the up-[4] p. Neuffer, Part. Accel. 14 (1983) 75
stream optllcal functions can be derived. The evolution ?:;5] C. Ankenbrandt et al., Phys. Rev. ST Accel. Beams 2 (1999)
the g8-function of such a re-matched beam through the ne

081001
diffuser is shown in Figure 6, matching fox, = 8mmrad ,
andj = 333 mm at the centre of the tracker [6] M. Alsharo’a et al., Phys. Rev. ST Accel. Beams 6 (2003)
‘ 081001

[7] R. Palmer et al., arXiv:0711.4275

CONCLUSION [8] S. Ozakiet al., “Feasibility Study-Il of a Muon-Based Neu-
trino Source”, BNL-52623 (2001).

400 +
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The new MICE diffuser meets all of its design require- . _
ments. It is simpler to manufacture and operate, and als&! D- M- Kaplanand K. Long, "MICE: The International Muon
provides greater flexibility to the MICE beamline to match lonization Cooling Experiment’, arXiv:0707.1915v1
a beam into the cooling channel. Software is in develog0] M. Apollonio, “The MICE Beam Line Commissioning’,
ment that will determine the most appropriate diffuser con- PAC 11, MOP020
figuration to match the beam into the MICE cooling chanf11] M. Apollonio and J. Cobb, “Optimal Size for the MICE Dif-
nel. fuser”, MICE Internal Note #176
[12] G4MICE homepage (version 2.3.0):

http://micewww.pp.rl.ac.uk:8080/projects/g4mice/ivik
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