Keyword: power-supply
Paper Title Other Keywords Page
MOPPD041 Beam Loss Protection for a 2.3 Megawatt LBNE Proton Beam dipole, quadrupole, proton, target 454
 
  • R.M. Zwaska, S.C. Childress, A.I. Drozhdin, N.V. Mokhov, I.S. Tropin
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy.
Severe limits are required for allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6·1014 protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that localized loss of a single beam pulse at 2.3 MW will result in a destructive event: beam pipe failure, damaged magnets and high levels of residual radiation inside the tunnel. A sustained full beam loss would be catastrophic. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.
 
 
MOPPP071 In Vacuum Conduction Cooled Superconducting Switch for Insertion Devices with Variable Period Length vacuum, insertion, insertion-device, FEL 726
 
  • T. Holubek, T. Baumbach, S. Casalbuoni, S. Gerstl, A.W. Grau, M. Hagelstein, D. Saez de Jauregui
    Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • C. Boffo, W. Walter
    BNG, Würzburg, Germany
 
  Switching the period length allows to increase the tunability of an insertion device. This can be realized in superconducting insertion devices (IDs) by reversing the current in a separately powered subsets of the superconducting windings. In order to use only one power supply instead of two for the two circuits, reducing the thermal input to the device, work is ongoing at ANKA to develop a superconducting switch. In this work we present the results of the test of an in-vacuum housed, conduction-cooled superconducting switch.  
 
MOPPR043 Design, Construction and Calibration of a First Prototype of Beam Position System for Hadron Therapy Facilities controls, proton, vacuum, high-voltage 876
 
  • A. Faus-Golfe, C. Belver-Aguilar, C. Blanch Gutierrez, J.J. García-Garrigós
    IFIC, Valencia, Spain
  • E. Benveniste, M. Haguenauer, P. Poilleux
    LLR, Palaiseau, France
 
  Funding: AIC10-D-000518 and AIC-D-2011-0673.
Beam Position Monitors (BPM) are essential elements in the instrumentation for the beam control in hadron therapy accelerators. The measurement of the beam position become more important at the secondary transport lines towards the patient room where this parameter must be completely determined. In this paper we describe the design, construction, read-out electronics and first calibration tests of a new type of BPM based on four scintillating fibers coupled to four photodiodes to detect the light produced by the fibers when intercepting the beam tails. The prototype will serve to evaluate the different design options in the mechanical and the read-out electronics implementation as well as to define the best processing method to get the beam position.
 
 
MOPPR052 Integration Design of BPM and Orbit Feedback Electronic for the TPS feedback, controls, EPICS, brilliance 900
 
  • C.H. Kuo, P.C. Chiu, K.T. Hsu, K.H. Hu, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  TPS (Taiwan Photon Source) is a 3 GeV synchrotron light source which is being in construction at NSRRC. The orbit measurement and control must be precise much than before in the TPS. New BPM electronic design with the latest generation FPGA and new mechanical form factor to enhance functionality of current generation products will be employed for the TPS. The prototype BPM electronics is testing in the TLS. These testing experiences will be applied in the TPS BPM electronic and software modification. To achieve the stringent orbit stability goal of the TPS, orbit feedback system is designed to eliminate beam motions due to various perturbation sources. The new orbit feedback system is merged to BPM electric system. This design will be enhanced to hardware reliability and fast data exchange performance. The design and implementation plan of the BPM system and the orbit feedback system are summarized in this report.  
 
TUOBB02 Commissioning of the PLS-II insertion, insertion-device, storage-ring, lattice 1089
 
  • S. Shin, J.Y. Choi, T. Ha, J.Y. Huang, I. Hwang, W.H. Hwang, Y.D. Joo, C. Kim, D.T. Kim, D.E. Kim, J.M. Kim, M. Kim, S.H. Kim, S.-C. Kim, S.J. Kwon, B.-J. Lee, E.H. Lee, H.-S. Lee, H.M. Lee, J.W. Lee, S.H. Nam, E.S. Park, I.S. Park, S.S. Park, S.J. Park, Y.G. Son, J.C. Yoon
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J-Y. Kim, B.H. Oh
    KAERI, Daejon, Republic of Korea
  • J. Lee
    POSTECH, Pohang, Kyungbuk, Republic of Korea
 
  The Pohang Light Source (PLS) has operated for 14 years successfully. To meet the request of the increasing user community, the PLS-II that is the upgrade project of PLS has been completed. Main goals of the PLS-II are to increase beam energy to 3 GeV, to increase number of insertion devices by the factor of two (20 IDs), to increase beam current to 400 mA and to reduce beam emittance below 10 nm with existing PLS tunnel and injection system. The PLS-II had been commissioned over the six months. During commissioning, we achieved 14 insertion devices operation and top-up operation with 100 mA beam current and 5.8 nm beam emittance. In this presentation, we report the experimental results from the PLS-II commissioning.  
slides icon Slides TUOBB02 [3.484 MB]  
 
WEPPD039 Status of the Utility System Construction for the 3 GeV TPS Storage Ring storage-ring, status, booster, controls 2597
 
  • J.-C. Chang, W.S. Chan, J.-R. Chen, Y.F. Chiu, Y.-C. Chung, K.C. Kuo, Y.-C. Lin, C.Y. Liu, I. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) was started in the end of 2009. The utility building for the TPS ring will be completed in the end of 2011. The whole construction of the utility system is scheduled to be completed in the end of 2012. Total budget of this construction is about four million dollars. This utility system presented in this paper includes the electrical power, cooling water, air conditioning, compressed air and fire control systems.  
 
WEPPD043 The Studies of Power System Harmonics at TLS coupling, cryogenics, dipole, controls 2609
 
  • T.-S. Ueng, J.-C. Chang, Y.F. Chiu, K.C. Kuo, Y.-C. Lin
    NSRRC, Hsinchu, Taiwan
 
  The power system harmonic distortion in the utility system of NSRRC is investigated for improving the power system performance. The monitored power quality data at the point of common coupling is examined and compared with industrial standards. In addition, the harmonic characteristics of electric power for the accelerator magnets and adjustable speed drives which contribute the most harmonics are analyzed. Furthermore, the approach to mitigate the harmonic effects for improving the power quality is studied.  
 
THPPC054 Installation and Tests of the X-Band Power Plant for the FERMI@Elettra Project klystron, FEL, vacuum, LLRF 3410
 
  • G. D'Auria, P. Delgiusto, F. Gelmetti, M.M. Milloch, A. Milocco, F. Pribaz, C. Serpico, N. Sodomaco, M. Svandrlik, R. Umer, L. Veljak
    ELETTRA, Basovizza, Italy
 
  FERMI@Elettra, the fourth generation light source facility at the Elettra Laboratory in Trieste, Italy, foresees an X-band accelerating section downstream the first bunch compressor to linearize the beam longitudinal phase space. The RF power for the structure is produced by the SLAC XL5 klystron, a scaled version of the XL4 tube, operating at the European frequency of 11.992 GHz. The 50 Hz klystron modulator is based on a standard pulse forming network (PFN) design, with thyratron and pulse transformer, for which there is already an extensive experience at the Elettra laboratory. We report about the installation and tests of the first high power RF station.  
 
THPPC056 Development of 12kW RF Power Supply for CYCHU-10 Cyclotron cavity, cyclotron, feedback, impedance 3416
 
  • D. Li, T. Hu, J. Huang, K.F. Liu, B. Qin, J. Yang, L. Yang
    Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
 
  One 12kW RF power supply has been developed for CYCHU-10, which is a 10 MeV cyclotron developed in Huazhong University of Science and Technology (HUST). A high performance DDS chip AD9859 is used to synthesize RF signal in this power supply, which is easy to change the output frequency. The centre frequency is 101MHz, and the frequency bandwidth is more than 1MHz. The RF power supply could operate in fine searching mode, coarse searching mode, tracking mode, and so on. It could search the resonant frequency of cavity with the frequency control loop. The final stage amplifier using a triode 3CW20,000H7 operates in grounded grid configuration, which is stable and reliable. The performance test using a 50Ω resistor load has finished, and major results are shown in this paper.  
 
THPPC061 A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures controls, vacuum, RF-structure, radio-frequency 3431
 
  • R.H. Soares, M.J. Barnes, S. Calatroni, J.W. Kovermann, W. Wuensch
    CERN, Geneva, Switzerland
 
  Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generator and presents measurement results.  
 
THPPC062 CPI 100kW Klystrons Operation Experiences in NSRRC klystron, factory, cathode, cavity 3434
 
  • T.-C. Yu, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, C.H. Lo, M.H. Tsai, Ch. Wang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  In 2004, NSRRC had decided to upgrade its traditional copper cavity in storage ring of Taiwan Light Source (TLS) to superconducting cavity for higher beam current, brighter X-ray and more insertion devices. To achieve this, the RF power source-the klystron had been upgraded by intensive cooperation with CPI (Communication & Power Industries) from 70 kW to 100 kW. The same 100 kW klystron would then be also adopted as the RF source in booster in TPS plan. There are total five 100kW CPI klystrons with Model number of VKB-7953B as the power amplifiers in RF facility of NSRRC. Four of the five klystrons have been tested in detail as basic characteristic understanding in custom test stand. Some encountered phenomenon in testing period would be discussed here. In conclusion, these klystrons from CPI is quite load VSWR sensitive while the performance has large difference between them.  
 
THPPC070 A High Power Test Facility for New 201.25 MHz Power Amplifiers and Components controls, DTL, status, linac 3449
 
  • J.T.M. Lyles, J. Davis, D. Rees, G. M. Sandoval, Jr., A. Steck, D.J. Vigil
    LANL, Los Alamos, New Mexico, USA
  • D. Baca, R.E. Bratton, R.D. Summers
    Compa Industries, Inc., Los Alamos, New Mexico, USA
  • N.W. Brennan
    Texas A&M University, College Station, Texas, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing a new Thales TH628 Diacrode® final power amplifier and associated driver stages. Anode power requirements for the TH628 are 28 kV DC, with 190 Amperes in millisecond pulses. A 225 uF capacitor bank supplies this current demand, with a crowbar circuit to rapidly discharge 88 kJ of stored energy. Charging current was obtained by re-configuring a 2 MW beam power supply remaining from another project. The power tubes are operated with DC anode voltage, and beam pulsing is done with control grid bias switching at relatively low power. A new Fast Protect and Monitor System was designed to take samples of RF reflected power, anode HV, and various tube currents, with logic outputs to promptly remove high voltages, RF drive and beam pulsing during faults. The entire test system is controlled with a programmable logic controller, for normal startup sequencing, protection against loss of cooling, and operator GUI. This test facility has been used over the past year to test the amplifiers along with high power coaxial components such as hybrid couplers and various water loads.
 
 
THPPD007 ILSF Storage Ring Magnets quadrupole, sextupole, dipole, multipole 3506
 
  • S. Fatehi, R. Aslani, M.R. Khabbazi
    IPM, Tehran, Iran
 
  Iranian Light Source Facility (ILSF) is a 3 GeV storage ring consisting 32 combined bending magnets in 2 types, 104 quadrupoles in 9 families and 128 sextupoles in 9 families. It was decided to use curved C-type, parallel ends, combined bending magnets that have the same lengths, a central fields of 1.42 T and total gap of 32 mm but quadrupole components of g1=-3.837 and g2=-5.839 T/m. Using two dimensional code POISSON and FEMM and applying appropriate shims, pole profile was optimized to maintain the field homogeneity over the full horizontal aperture of ±10, such that, field tolerance is of the order of 10-4. Also a pole and yoke geometry was developed for the quadrupole, with a field gradient of 23 T/m, bore radius of 30.5 mm and magnetic length of 0.53m which is the maximum possible values in the lattice. Obtained field tolerance is of the order of 10-4 in the good field region 18 mm. Sextupoles are supposed to have a bore radius of 34 mm, max sextupole component of 700 T/m2 and are designed in order to achieve a field tolerance of 10-3 in the good field region of 12 mm. Also in order to investigate the end effects 3D calculations has been done by using Radia 3D code.  
 
THPPD014 Design and Performance of Various kinds of Corrector Magnets for the Taiwan Photon Source feedback, booster, vacuum, simulation 3524
 
  • C.Y. Kuo, C.-H. Chang, M.-H. Huang, C.-S. Hwang, J.C. Jan, F.-Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  Three types of DC corrector magnets will be installed in the booster ring (BR), LINAC to booster (LTB) and booster to storage ring (BTS) in the Taiwan photon source (TPS). These DC corrector magnets have different gap sizes, iron lengths and field strengths for different bending angles to optimize the electron beam. The DC magnetic fields are simulated by TOSCA 2D/3D static field analysis and optimum processes are discussed. An AC steering fast feedback corrector (FFC) combines horizontal and vertical dipole fields for the fast feedback correction in the storage ring (SR). The field variation with the alternating current in the 300Hz frequency of the FFC magnet is simulated by the Opera 3d ELEKTRA/SS analysis module to estimate the operating current. This paper will be presented about features, design concept and results of field measurement of these corrector magnets.
NSRRC, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
 
 
THPPD020 Test of a 1.8 Tesla, 400 Hz Dipole for a Muon Synchrotron dipole, simulation, synchrotron, acceleration 3542
 
  • D.J. Summers, L.M. Cremaldi, T.L. Hart, L.P. Perera, M. Reep
    UMiss, University, Mississippi, USA
  • S.U. Hansen, M.L. Lopes
    Fermilab, Batavia, USA
  • J. Reidy
    Oxford High School, Mississippi, USA
  • H. Witte
    BNL, Upton, Long Island, New York, USA
 
  Funding: Supported by DE-FG05-91ER40622.
A 1.8 Tesla dipole magnet using 0.011" AK Steel TRAN-COR H-1 grain oriented silicon steel laminations has been constructed as a prototype for a muon synchrotron ramping at 400 Hz. Following the practice in large 3 phase transformers and our own OPERA-2D simulations, joints are mitered to take advantage of the magnetic properties of the steel which are most effective in the direction in which the steel was rolled. Measurements with a Hysteresigraph 5500 and Epstein Frame show a high magnetic permeability which minimizes stored energy in the yoke so the magnet can ramp quickly with modest voltage. A power supply with a fast IGBT switch and a polypropylene capacitor was constructed. Coils are wound with 12 gauge copper wire which will eventually be cooled with with water flowing in stainless steel tubes. The magnetic field was measured with an F. W. Bell 5180 peak sensing Hall Probe connected to a Tektronics TDS3054B oscilloscope.
 
 
THPPD048 15+ T HTS Solenoid for Muon Accelerator Program solenoid, collider, laser 3617
 
  • Y. Shiroyanagi, R.C. Gupta, P.N. Joshi, H.G. Kirk, R.B. Palmer, S.R. Plate, W. Sampson, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline
    UCLA, Los Angeles, California, USA
  • J. Kolonko, R.M. Scanlan, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work is supported by the U.S.Department of Energy under Contract No. DE-AC02-98CH10886 and SBIR contract DOE Grant Numbers DE-FG02-07ER84855 and DE-FG02- 08ER85037.
This paper will present the construction and test results of a ~10 T insert coil solenoid which is part of a proposed ~35 T solenoid being developed under a series of SBIR contracts involving collaboration between Particle Beam Lasers (PBL) and Brookhaven National Laboratory. The solenoid has an inner diameter of 25 mm, outer diameter of ~95 mm and a length of ~70 mm. It consists of 14 single pancake coils made from 4 mm wide 2G HTS conductor from SuperPower Inc., co-wound with a 4 mm wide, 0.025 mm thick stainless steel tape. These are paired into 7 double pancake coils. Each double pancake coil has been individually tested at 77 K before assembly in a complete solenoid. The solenoid is nearly ready for a high field test at ~4K.
 
 
THPPD050 Fast Ramping Arbitrary Waveform Power Supplies for Correction Coils in a Circular Electron Accelerator electron, controls, dipole, resonance 3623
 
  • A. Dieckmann, A. Balling, O. Boldt, F. Frommberger, W. Hillert, W. Lindenberg
    ELSA, Bonn, Germany
 
  New fast ramping power supplies working in pulsed bridge technology upgrade the existing Corrector System at ELSA. Current changes of ±0.8 A/msec are achieved. The newly developed CAN-Bus Interface allows linear interpolation of up to 250 support points with minimal time steps of 1msec. The first stage uses 24 power supplies to improve the position of the beam orbit in the horizontal plane using dipole correction coils. It will be extended to include the vertical plane with new corrector coils in the near future. This poster describes the operating principles of the power supply and the interface.  
 
THPPD051 New Power Supply of the Injection Bump Magnet for Upgrading the Injection Energy in the J-PARC 3-GeV RCS injection, superconductivity, linac, proton 3626
 
  • T. Takayanagi, N. Hayashi, M. Kinsho, N. Tani, T. Togashi, T. Ueno
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  With the energy upgrading of LINAC (Linear accelerator) to 400 MeV in the J-PARC (Japan Proton Accelerator Research Complex), a new power supply of the injection bump magnet has been designed for the 3-GeV RCS (Rapid Cycling Synchrotron). The new power supply is composed with the capacitor bank which has function to form the output current pattern. This power supply is a commutation strategy using the electrical charge and discharge of the capacitor, and the frequency of the switch that becomes the source of the noise is a little. Comparing to the conventional switching-type power supply, this power supply is switched only twice for the pattern formation. Thus, the ripple due to the switching can be expected to be much lower. The 1/16 scale model was manufactured and the characteristics was evaluated. This paper summarizes the design parameter and the experimental result of the new power supply.  
 
THPPD052 Operation and Current Status of Injection, Extraction, Kicker Magnet and the Power Supply for J-PARC 3 GeV RCS kicker, impedance, extraction, injection 3629
 
  • M. Watanabe, N. Hayashi, Y. Shobuda, K. Suganuma, T. Takayanagi, T. Togashi
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  3-GeV RCS (Rapid Cycling Synchrotron) at High Intensity Proton Accelerator Facility (J-PARC) have started for 24-hour operation with repetition rate of 25 pps in February, 2009. Kicker power supply system which uses thyratrons switches is used for extraction of the proton beam. There were many troubles for unstable operation of the thyratrons just after beam commissioning started. Recently, however, the operations were improved and the failure rate was reduced to approximately 0.1 % in October 2010. After the earthquake on March 11, 2011, the injection and extraction magnets, power supplies, the cables and the bus-duct have been checked. Insulation resistance test, impedance test were performed. Reflected wave measurements by the low-level and high-power pulse of the kicker magnets were performed. Visual checks by a fiber endoscope were also performed in the kicker magnets. The results of the measurements and the checks were all not in the problem.  
 
THPPD053 Study on Eddy Current Power Losses in Insulated Core Transformer Primary Coil induction, high-voltage, factory, simulation 3632
 
  • L. Yang, X. Liu, Y.Q. Xiong, J. Yang
    Huazhong University of Science and Technology (HUST), Wuhan, People's Republic of China
  • T. Yu
    HUST, Wuhan, People's Republic of China
 
  Insulated core transformer (ICT) high-voltage DC power supply is widely used in electron beam accelerator. With air gap in ICT, the reluctance of magnetic circuit is larger than other transformers, and the transverse magnetic flux leakage around the primary coil is more serious. Because the magnetic flux on the radial direction of coil cannot be ignored, the eddy current loss on the wire should be discussed. In this paper, simulation and analysis of the eddy current loss is presented. The relationship between the sizes of the coil wire is also discussed. An optimal design of the primary coil is shown.  
 
THPPD054 Low Current Bipolar Magnet Power Supply System at the PLS-II Storage Ring dipole, quadrupole, lattice, EPICS 3635
 
  • S.-C. Kim, J.Y. Huang, K.R. Kim, S.H. Nam, S. Shin, Y.G. Son, C.W. Sung
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: * This work is supported by the Ministry of Education, Science and Technology, Korea.
Lattice of the Storage Ring (SR) is changed from TDB to DBA, and beam energy is enhanced from 2.5 GeV to 3.0 GeV at the Pohang Light Source upgrade (PLS-II). At the PLS-II, Magnet Power Supplies (MPS) were newly designed according to magnet specification of the PLS-II. All MPSs are adopted switching type power conversion technology. Low current bipolar MPSs for vertical corrector(VC), horizontal corrector(HC), fast corrector(FC), aux.-quadrupole(AQ), skew(SK) and dipole trim coil(TR) magnets are H-bridge type. All MPSs are performed less than ± 10 ppm output current stability and adopted full digital controller. Except vertical corrector MPSs, all unipolar and bipolar MPSs are developed as embedded EPICS IOC. In this paper, we report on the development and characteristics of the bipolar MPS for the PLS-II Storage Ring.
 
 
THPPD055 High Current Unipolar Magnet Power Supply System at the PLS-II Storage Ring quadrupole, sextupole, lattice, septum 3638
 
  • S.-C. Kim, J.Y. Huang, K.R. Kim, S.H. Nam, S. Shin, Y.G. Son, C.W. Sung
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work is supported by the Ministry of Education, Science and Technology, Korea.
Lattice of the Storage Ring (SR) is changed from TDB to DBA, and beam energy is enhanced from 2.5 GeV to 3.0 GeV at the Pohang Light Source upgrade (PLS-II). At the PLS-II, Magnet Power Supplies (MPS) were newly designed according to magnet specification of the PLS-II. All MPSs are adopted switching type power conversion technology. High current unipolar MPSs for bending(BD), main-quadrupole(MQ), sextupole(ST) and septum(SP) magnet are parallel operation type of unit stack buck type power supply. Unit stack of unipolar MPS has capability maximum 250A and operation 10kHz. BD and MQ MPS are adopted four stack as each stack 90degree phase shift switching, and have capability maximum 1000 A. ST MPS is adopted two stack as each stack 180degree phase shift switching, and have capability maximum 500 A. SP MPS is adopted single, and have capability maximum 250 A. All unipolar MPSs are developed as full digital controller, embedded EPICS IOC and operated less than ± 10ppm current stability. In this paper, we report on the development and characteristics of the high current unipolar MPS for the PLS-II SR.
 
 
THPPD056 Performance of the Crowbar of the LHC High Power RF System klystron, high-voltage, proton, controls 3641
 
  • G. Ravida, O. Brunner, D. Valuch
    CERN, Geneva, Switzerland
 
  During operation, the LHC high power RF equipment such as klystrons, circulators, waveguides and couplers have to be protected from damage caused by electromagnetic discharges. Once ignited, these arcs grow over the full height of the waveguide and travel towards the RF source. The burning plasma can cause serious damage to the metal surfaces or ferrite materials. The "crowbar" protection system consists of an arc current detector coupled with a fast high voltage switch in order to rapidly discharge the main high voltage components such as cables and capacitors and to shut down the high voltage source. The existing protection system, which uses a thyratron for grounding the high voltage circuit, has been installed in the LHC about 20 years ago. The problem of "faulty shots" appears due to the higher energy of LHC compared to LEP, which may lead to unnecessary stops of the LHC due to the crowbar system. This paper presents two approaches under consideration to improve the thyratron’s performance and to use a solid state thyristor in high energy environment. The main objectives will be dissipate as little energy as possible in the arc and avoid "faulty shots".  
poster icon Poster THPPD056 [0.703 MB]  
 
THPPD058 Reduction of Conductive EMI Noise Resulted from the Commercial Power Supply high-voltage, vacuum, impedance, coupling 3644
 
  • C.S. Chen, C.K. Chan, J.-C. Chang, Y.L. Chu, K.H. Hsu, C.Y. Kuo, Y.-H. Liu, C.S. Yang
    NSRRC, Hsinchu, Taiwan
 
  Almost every electronic equipment must be connected to power system. Because of the complexity of power lines, the reduction of conductive electro-magnetic interference (C-EMI) plays an important role in precise measurements. In this paper, a line impedance stabilization network (LISN) was built up to get the spectrum from power lines. After several measurements by some commercial power supplies, it is found that some of these power supplies induce effectively C-EMI into power lines, even if a passive filter is bound in power line. These noises may influence numerous equipments in a local area near the sources. Therefore, how to choose a suitable filter is a decisive factor to reduce the magnitude of C-EMI.  
 
THPPD059 Conductive EMI Reduction to Kicker Magnet Power Supply in NSRRC kicker, insertion, controls, synchrotron 3647
 
  • Y.-H. Liu, J.-C. Chang, C.S. Chen, H.H. Chen, J.-R. Chen
    NSRRC, Hsinchu, Taiwan
 
  The purpose of this paper is to estimate and reduce the conductive Electromagnetic Interference (EMI) from kicker magnet power supply in TLS. A LISN system was conducted to measure the EMI spectrum of kicker power supply. The EMI noise exceeded FCC standards in some frequency range especially during kicker firing. Reducing EMI level by using different EMI filters were applied. Double pi filter was more efficient than single pi filter. After using filter, the conducted EMI could diminish lower than FCC class B. The experimental results will provide useful information to future TPS pulsed magnet design.  
 
THPPD061 Optimal Design for Resonant Power Transformer impedance, controls, factory 3650
 
  • C.-Y. Liu, D.-G. Huang, J.C. Huang
    NSRRC, Hsinchu, Taiwan
 
  The energy and dc to dc conversion of the resonant transformer are required to achieve optimal design and working condition of the resonant region frequency. To meet this requirement, the core loss will be checked first by data book for calculation. Using a reliable precise instrument is needed to scan the resonant cure of the resonant transformer as we designed the resonant cure. We calculated the conduction loss in second design step. We design a resonant transformer which the conduction loss equal core loss does not meet optima design, because the core loss is very high when the transformer works in resonant frequency. Thus, we only reduce the conduction loss is optima design aspect.  
 
THPPD062 Development of Digital-controlled Corrector Magnet Power Converter with Shunt as a Current Sensing Component controls, simulation, feedback 3653
 
  • B.S. Wang, J.C. Huang, K.-B. Liu
    NSRRC, Hsinchu, Taiwan
 
  In Taiwan light source (TLS), Bira MCOR power converter modules are adopted as the corrector magnet power converters, the output is regulated by analog PWM IC that caused nonlinear behavior at zero cross and the adjustment of compensator for difference kind of magnet load is inconvenient. In the thesis the analog regulation IC is replaced by a fully digital regulation control circuit to realize digital regulation control converter. With plugging the home-made fully DSP regulation control cards into MCOR30 that the current sensing component is a shunt, the switching losses of MOSFET was reduced and the cost that the component of current sense. With the fully digital regulation control circuit, the parameter of the compensator for different magnet load is very easy to adjustment. In addition, the feasibility and validity of MOSFET switching theorem is simulated with Matlab simulink and the performance of this power converter is verified, the output current ripple of this power converter could be lower than 10ppm, which is beyond the requirement of current TLS corrector power converter and qualified to be used in the future TPS facility.  
 
THPPD063 Zero Voltage Switching of Two-switch Flyback-Forward Converter synchrotron, synchrotron-radiation, radiation, photon 3656
 
  • J.C. Huang, K.-B. Liu, Y.S. Wong
    NSRRC, Hsinchu, Taiwan
 
  The traditional pulse-width-modulated flyback converter power switch has serious electromagnetic interference (EMI) and lower conversion efficiencies problems due to the hard-switching operations. This paper produces a zero voltage switching of flyback-forward converter with an active-clamp circuit, the traditional pulse-width-modulated flyback converter with a active clamp circuit to achieve zero-voltage-switching (ZVS) at both main and auxiliary switches, the active-clamp circuit can reduce most of switching loss and voltage spikes across the switches and improve the overall efficiency of the converter. The theoretical analysis of soft switching flyback-forward converter with an active-clamp circuit is verified exactly by a prototype of 50W with 100V input voltage, 5V output voltage and 30kHz operated frequency.  
 
THPPD064 The Compensator Design of the Fully Digital Controlled Corrector Magnet Power Converter by Using LabView as the Development Tools controls, LabView, feedback 3659
 
  • B.S. Wang, J.C. Huang, K.-B. Lin
    NSRRC, Hsinchu, Taiwan
 
  The auto-tuning of PI-compensator for power converter is fulfilled by using the LabVIEW. The current error signals of the power converter with different PI compensating parameters are transferred by RS-232 or Ethernet communication interface from DSP card into LabVIEW and FFT analysis are calculated. The FFT analysis are stored in the batch file for further numerical analysis and the parameters with the best response is recognized which will be set as the default PI parameters. In addition, the feasibility and validity of auto-tuning theorem was verified by measuring the long-term stability of output current and during the long-term measuring period the stability and ripple current of the power converter are observed. In this thesis, the fully digital regulation controlled corrector magnet power converter with a shunt as the current sensing component was used as the developing platform. The auto-tuning theorem was realized and applied to the compensator of the power converter, and the best output current response of the power converter was fulfilled.  
 
THPPD066 High Precision Programmable of TPS Quadrupole Magnet Power Supply controls, quadrupole, synchrotron, feedback 3662
 
  • Y.S. Wong, J.C. Huang, K.-B. Liu, W.S. Wen
    NSRRC, Hsinchu, Taiwan
 
  In 1993, the first of Taiwan light source was held on October 16. First beam stored in the storage ring and facility at synchrotron radiation research centre (SRRC) was opened to users and the full energy injection to 1.5Gev after seven years. In 2007, the president of Executive Yuan Taiwan had been announcement to set up a third-generation synchrotron radiation. Taiwan Photon Source (TPS) project total budget of NT6, 885 million from 2007~ 2013. TPS project will improve technical capability to build to3.3Gev electron energy. Totally had been installed 1032sets of magnet power supplies for the storage ring and 152 sets for the injector. In the future, Taiwan photon source set up complete and operation, it will offer one of the world's brightest synchrotron x-ray sources.  
 
THPPD067 Performance of Kicker Pulsers for TPS Project kicker, injection, storage-ring, booster 3665
 
  • C.-S. Fann, C.-T. Chen, K.T. Hsu, S.Y. Hsu, J.C. Huang, K.-K. Lin, K.-B. Liu, H.M. Shih, K.L. Tsai
    NSRRC, Hsinchu, Taiwan
 
  A set of kicker power suppliers has been designed and fabricated for storage ring beam injection of the Taiwan Photon Source (TPS) project. In order to fulfill the requirements, the performance of the designed units has been bench tested and the results are examined. The matching in four pulsers, the pulse-to-pulse stability and the time jitter are specified according to the beam injection requirements. The engineering evaluation and the measurement results are briefly discussed.  
 
THPPD068 Precision sbRIO-based Magnet Power Supply Annunciator and Control Interface for Accelerator Control Systems controls, status, EPICS, monitoring 3668
 
  • S. Cohen, P. Kowalski
    Bira, Albuquerque, New Mexico, USA
 
  Beam physicists require more data and performance information that is commonly provided by the modern switch-mode power supplies installed at these facilities. We describe single-board RIO (sbRIO)-based* power-supply controller that provides the functionality required for integrating these supplies into control and safety systems at these facilities. The unit allows local control and presents a visual representation of the operational status of each power supply, independent digitized read back of power-supply output current, EPICS control via a Channel Access (CA) server, status information and electrical connections to independent and redundant accelerator safety systems.
* National Instruments, Austin, TX, http://www.ni.com/singleboard/ .
 
 
THPPD070 Design of High Power Pulse Modulator for Driving of Twystron used in S-band Linear Accelerator electron, vacuum, klystron, cathode 3674
 
  • V. Aslani, F. AbbasiDavani, F. Ghasemi, M.Sh. Shafiee
    sbu, Tehran, Iran
 
  This design related to an s-band linear accelerator that the main tube and buncher of it have been made. RF power supply is used in this accelerator tube made up of a Twystron with 2.5 MW peak power and frequency band width 2.9~3.1 GHz. This paper offers the design of modulator for this RF amplifier. This modulator design uses solid-state method and is under construction with specification of ; Adjustable voltage from 0 to 120 kV, adjustable pulse width 2 until7μsecond, adjustable repetition rate 80-120 Hz ,ripple less than0.25% and efficiency up 80 percent. This system designed with series of 6 modules that each of them provides 5kV and IGBT switches that transform the voltage on the pulse transformer.  
 
THPPD071 A Compact Switching Power Supply utilizing SiC-JFET for the Digital Accelerator induction, simulation, synchrotron, acceleration 3677
 
  • K. Okamura, T. Iwashita, K. Takayama, M. Wake
    KEK, Ibaraki, Japan
  • K. Takaki, M. Toshiya
    Iwate university, Morioka, Iwate, Japan
 
  New induction synchrotron system using an induction cell has been developed and constructed at KEK*. We refer to the accelerator using the induction acceleration system combined with digitally controlled PWM power supply as Digital Accelerator**. In that system, the switching power supply is one of the key devices which realize digital acceleration. The requirements of the switching power supply are high voltage (2 kV) and high repetition frequency (1 MHz). In the present system, we used series connected MOSFETs as the switching device. However, series connection gives large complexity and less reliability. Among the various switching devices, a SiC-JFET is the promising candidates because it has ultrafast switching speed and voltage blocking capability. Therefore, we have developed a new device to substitute existing silicon MOSFET and succeeded to operate with 1 MHz – 1 kV – 27 A condition***. Then we designed and constructed a ultra compact full bridge switching power supply utilizing those devices as a next step. Design and test results will be presented in the conference.
* T. Iwashita et al., KEK Digital Accelerator, Phys. Rev. ST-AB 14, 071302 (2011)
** K. Takayama et al., in Proc. of IPAC’11, pp 1920-1922
*** K. Okamura et al., in Proc. of IPAC’11, pp 3400-3402
 
 
THPPD073 Development and Management of the Modulator System for PLS-II 3.0 GeV Electron Linac controls, linac, klystron, feedback 3683
 
  • S.H. Kim, J.Y. Huang, S.J. Kwon, B.-J. Lee, Y.J. Moon, S.H. Nam, S.S. Park, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work is supported by MEST(Ministry of Education, Science and Technology) and POSCO(Pohang Steel and Iron Company).
The Pohang Accelerator Laboratory (PAL) had started the upgrade project (called PLS-II) of the Pohang Light Source (PLS) from 2009 for increasing its energy from 2.5 GeV to 3 GeV and changing the operation mode from fill-up to top-up mode. Top-up mode operation requires high energy stability of the linac beam and machine reliability in the linac modulator systems. For providing the additional 0.5 GeV energy from the 2.5 GeV PLS linac, we added four units of the modulator system. We have two different types of the pulse modulator system for using existing pulse modulators, thyristor control type, in the upgrade project (PLS-II). The two types are thyristor control type and inverter power type. In the thyristor control type, a de-Qing system controls the modulator pulse forming network (PFN) charging voltage stability, and in the inverter power supply type, CCPS provides highly stable charging voltage to the modulator. We will present development and management of the pulse modulator system for obtaining machine reliability and stability from 3.0 GeV linac.
 
 
THPPD075 Design and Measurements of a Fast High-voltage Pulse Generator for the MedAustron Low Energy Transfer Line Fast Deflector high-voltage, injection, synchrotron, simulation 3689
 
  • T. Fowler, M.J. Barnes, T. Kramer, F. Müller, T. Stadlbauer
    CERN, Geneva, Switzerland
 
  MedAustron, a centre for ion-therapy and research, will comprise an accelerator facility based on a synchrotron for the delivery of protons and light ions for cancer treatment. The Low Energy Beam Transfer line (LEBT) to the synchrotron contains an electrostatic fast deflector (EFE) which, when energized, deviates the continuous beam arriving from the ion source onto a Faraday Cup: the specified voltage is ±3.5 kV. De-energizing the EFE for variable pulse durations from 500 ns up to d.c. allows beam passage for multi-turn injection into the synchrotron. To maintain beam quality in the synchrotron, the EFE pulse generator requires rise and fall times of less than 300 ns between 90 % of peak voltage and a ±1 V level. To achieve this, a pulsed power supply (PKF), with high voltage MOSFET switches connected in a push-pull configuration, will be mounted in close proximity to the deflector itself. A fast, large dynamic range monitoring circuit will verify switching to the ±1 V level and subsequent flat bottom pulse quality. A prototype will be installed in the injector test stand in 2012; this paper presents the design and first measurements of the PKF and its monitoring circuit.  
 
THPPD077 ISIS Injector 2 MW Pulsed RF System Power Supply Upgrade controls, linac, simulation, cathode 3695
 
  • R.J. Anderson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • M. Keelan
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS pulsed neutron and muon source uses a 4-stage 70 Mev linear accelerator powered by TH116 triode valves. The TH116 anode supply capacitor banks have until recently been supplied by conventional 6-pulse silicon controlled rectifier (SCR) bridges delivering up to 40 kV at 5 A direct current. This dated system has become increasingly difficult to maintain. Early trials of an upgraded system using modern, compact, capacitor charging, switch mode supplies (SMPSs) resulted in severe supply power quality issues due to the pulsed nature of the current demanded from the capacitor banks. Measurements and Spice simulations of the old and replacement supplies allowed the power quality issues to be investigated and an additional external-to-the-SMPS regulator control loop to be developed. The new SMPSs operating with the additional control loop have been tested successfully on several of the linear accelerator stages and are now in continuous operational use. The process of replacing all the original SCR 6-pulse bridges is now well advanced and the operational benefits for ISIS are becoming evident.  
 
THPPD078 Cold Cathode Thyratron Based High-voltage Kicker Generators at the Duke Accelerators: Six Year Experience kicker, cathode, extraction, high-voltage 3698
 
  • V. Popov, S.F. Mikhailov, P.W. Wallace, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
 
  Funding: This work is supported in part by the US DOE grant #DE-FG02-97ER41033.
The performance of the Duke storage ring based light sources, the Duke storage ring FEL and High Intensity Gamma-ray Source (HIGS), has been greatly improved since 2007 as the result of operating a new full-energy, top-off booster injector (0.18 - 1.2 GeV), allowing fixed energy operation of the storage ring (0.25 - 1.2 GeV). The injection/extraction kicker system is one of the key components of the accelerator facility which determines efficiency and reliability of the light source operation. Pseudo-Spark Switches(PSS), also known as cold cathode thyratrons, are the critical components of the high voltage pulse generators for kickers. More than six years of operation has allowed us to study the lifetime issue for the 10 kA class devices. Recently, we have tested the next generation cold cathode thyratron, with one installed in one of our storage ring kicker high voltage generators. In the present paper we will also present preliminary test results of this new thyratron and the required modifications of its triggering driver to improve its performance.
 
 
THPPP081 Status of Injection Energy Upgrade for J-PARC RCS injection, impedance, quadrupole, kicker 3921
 
  • N. Hayashi, H. Harada, H. Hotchi, J. Kamiya, P.K. Saha, Y. Shobuda, T. Takayanagi, N. Tani, M. Watanabe, Y. Watanabe, K. Yamamoto, M. Yamamoto, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  The injection energy upgrade for J-PARC RCS is planed in 2013. This includes the power supplies upgrade of injection pulsed magnet system, suppression for leakage field, quadrupole correction magnets, reduction of kicker impedance effect and improvements of beam diagnostic instrumentation. The paper reports the present status.  
 
THPPR017 The First Development of an EPICS Control System for the IAC Accelerators EPICS, controls, emittance, linac 4002
 
  • A. Andrews, C.F. Eckman, A.W. Hunt, Y. Kim, D.P. Wells
    IAC, Pocatello, IDAHO, USA
  • K.H. Kim
    SLAC, Menlo Park, California, USA
 
  At the Idaho Accelerator Center (IAC) of Idaho State University, we have been operating 15 low energy accelerators for nuclear physics applications and medical isotope production. But those accelerator do not have good computer based system to control the various accelerator components remotely. To obtain stable accelerator operations with a good reproducibility, we adapted the EPICS accelerator control system. After developing one full set of the EPICS accelerator control system for various components, we will apply the same EPICS control system for all other operating accelerators at the IAC. Since January 2011, we have been developing an EPICS control system for a 16 MeV S-band linac by collaborating with SLAC control group. In this paper, we describe our first EPICS accelerator control system to control magnet power supplies of the S-band linac at the IAC.