2012 International Particle Accelerator Conference

PLS-II (Upgrade of PLS)Commissioning

Seunghwan Shin for the PLS-II commissioning team

2012. 5. 22

Project and budget @ PAL

XFEL (On going) 400 M\$

Human

PLS-II (Completed) 100 M\$

PAL : Chronology

I. PLS

Project started	Apr. 1	1988
 Ground-breaking 	Apr. 1	1991
• 2-GeV Linac commissioning	Jun. 30	1994
 Storage ring commissioning 	Dec. 24	1994
User service started	Sep. 1	<u> 1995</u>
1st PLS Upgrade Complete		
\checkmark Energy ramping to 2.5 GeV	Sep. 1	2000
✓ 2.5-GeV injection	Nov. 1	2002

II. 2nd Major Upgrade of the PLS (PLS-II)

 User service started 	Mar.	2012
3.0 GeV PLS-II Upgrade Complete	Dec.	2011
• 3.0 GeV PLS-II Upgrade begin	Jan.	2009

III. PAL-XFEL Going On

10GeV Linac Based 0.1 nm x-ray FEL (2011 ~)

PLS-II upgrade project ('09~'11)

Commissioning team and contributor

PAL

- S. Kwon
- D-T. Kim
- D-E. Kim
- M. Kim
- S-H. Kim
- S-C. Kim
- J. Kim
- C. Kim
- B. Park
- S-S. Park
- S-J. Park
- E. Park
- Y. Son
- J. Yoon
- B. Lee
- E. Lee

- J. Lee
 - H. Lee
 - Y. Joo
 - J. Choi
 - T. Ha
 - W. Hwang
 - I. Hwang
 - J. Lee
 - B. Oh
 - C. Lee
 - H. Lee
 - J-Y. Kim
 - + PAL staff

THILAND

- H. Weidemann
- C. Somjai

SSRF

- H. Jie
- G. Liu

SSRL

- J. Safranek
- J. Sebek
- R. Hettel

SOLEIL

- L. Nadolski
- N. Hurbert

NSLS-II

- T. Shaftan
- J. Choi
- ASLS
- E. Tan

SLS

• M. Boege

Spring-8

- M. Takao
- T. Nakamura
- K. Kobayashi
 KEK
- J. Urakawa
 ALS
- G. Portmann
- W. Wan

APS

- L. Emery
- G. Decker

TPS

- P. Chou
- C. Kuo

Support from accelerator society

○ Commissioning tool

- Matlab middle layer
- Labca

○ Digital BPM

- Libera Brilliance
- Many functions : Orbit interlock, post mortem
- First turn, TBT, FA (10K Hz), SA (10 Hz)

○ Digital timing system

- Easy to control for all machine timing in control room
- Collaboration with SSRF

○ Gradient dipole magnet

- Useful information from CLS, ALBA and Sprear-3
- Collaboration with IHEP

○ Many other encouragements

Commissioning milestones

⊖ **2011**

- 25 January, PLS-II installation begins
- 23 May, Linac commissioning begins
- 13 June, 3 GeV beam
- 25 June, SR installation finished and BTL commissioning begins
- 1 July, First turn
- 5 July, Kicker PS accident
- 5 August, First accumulation
- September, Shutdown for installating insertion device
- 7 October, 100 mA stored
- 24 October, First photons to beamline
- December, Shutdown for installating insertion device

O **2012**

- 14 February, Commissioning with users
- 21 March, Start of operations

PLS-II Linear accelerator

Length - 164 m + 39
B.O.G.E.V. full energy mection
D.A.S.S.G. MHz (S-band)
D.Hz, 1.5 ns, 1Å pulsed beam
Norm. emmittance 120µmrad

Linac & BTL commissioning

○ First beam from gun (23 May)

Our measurement was not a picture of an E-beam profile. It was a picture of a boa constrictor digesting an elephant.

○ Emittance measurement (H/V: 600/800 nm @ 100 MeV)

Linac & BTL commissioning

○ 3 GeV beam (13 June)

○ Beam at injection (29 June)

○ Summary

PLS-II Storage Ring

- Beam Energy 3.0GeV
- Beam Current 400mA
- Lattice DBA
- Superperiods 12
- Emittance 5.8 nm·rad
- Tune 15.245 / 9.18
 - RF Frequency 499.97 MHz
- Energy spread 0.1%
- 0.1%

First turn & Kicker fire

○ First turn (1 July)

○ Kicker fire (5 July)

Sextupole on / Bending 3.00 -> 3.04 GeV

Beam storage

151 m\

Unexpected obstacle

\bigcirc Fine orbit correction

- 96 BPMs and 96 Slow correctors
- 96/93 Singular values

○ LOCO application; Beta correction

○ LOCO application; Dispersion and coupling correction

○ PLS-II RF chracteristics

- 1.85 MV gap voltage
- 4 cavities
- RMS 0.1 % amplitude
- RMS 0.1 degree
- High power RF
- Digital field control

_	Specification	Phase-I(~2012)	Phase-II(2013~)
) –	Energy/Current	3.0GeV/100mA	3.0GeV/200mA
_	Losses with IDs	1,242keV	1,242keV
e _	Beam Power	124kW	248kW
C _	RF Cavities (Q'ty)	NC x 5	SC x 2
	RF Power Sources	(75x2)+300kWx2	300kWx2
_	Cryomodule	installing	~1.8MV/each
_	Cryogenic	commissioning	~700W

Vacuum system

Orbit stability

Instability

Beam line commissioning

○ 30 Beam line including 14 IDs (10 IVUs)

○ Spectrum from SFA IVU

Top-up commissioning

○ Radiation safety issue

0.03 - Reduction of vertical emittance 0.02 (Slit before SR) 0.01 Energy .3 - Reduction of gua pulse (ک) 0.00 8 (Current 2ns pulse) Time 0.83 ns -0.01 - Enforecement of shielding -0.02 (Keep same condition) -0.03 -0.8 -0.6 -0.4 0.2 0.6 0.8 10 15 -0.2 0.0 0.4 20 ○ Stored beam perturbation Time (ns)

- On plan to improve injection system

Post commissioning; User operation

MTTR (min) 42

MTBF (hr) 84

Post commissioning; Ground motion

Summary

○ Current status / Commissioning Goals / PLS-II Goals

- Beam energy : 3.0 / 3.0 / 3.0 GeV
- Current : 100 / 100 / 400 mA
- Storage Ring Emittance : 5.8 / 5.8 / 5.8 nm·rad
- Operation mode : Decay / Top-up / Top-up
- No. of Insertion Device : 14 / 14 / 20
- Orbit stability : 2 / 2 / < 1 μ m

We really would like to appreciate all efforts and helps from worldwide accelerator physicists.

PAL staffs, even skipping their vacation during PLS-II commissioning, showed much passions with expertise and energy towards the commissioning with fine work.

Thanks so much !