Keyword: solenoid
Paper Title Other Keywords Page
MO2A03 Commissioning and Early Operation of the ARIEL e-Linac linac, gun, TRIUMF, electron 12
 
  • T. Planche, M. Alcorta, F. Ames, R.A. Baartman, C.B. Barquest, B. Humphries, D. Kaltchev, S.R. Koscielniak, R.E. Laxdal, Y. Ma, M. Marchetto, S. Saminathan, E. Thoeng
    TRIUMF, Vancouver, Canada
  • P. Jung
    UW/Physics, Waterloo, Ontario, Canada
 
  The ARIEL electron linac has been added to the TRIUMF facility as a new driver for the production of radioactive isotopes through photo-fission to complement the existing 500 MeV, H- TRIUMF cyclotron. The electron beam driver is specified as a 50 MeV, 10 mA cw superconducting electron linac at 1.3 GHz. The first 30 MeV stage of the e-linac consisting of two cryomodules is completed. The paper will describe the recent commissioning and early operation results.  
slides icon Slides MO2A03 [25.277 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MO2A03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOOP01 The SARAF-LINAC Project Status linac, cryomodule, status, rfq 38
 
  • N. Pichoff, B. Gastineau, P. Girardot
    CEA/DSM/IRFU, France
  • N. Bazin, D. Chirpaz-Cerbat, B. Dalena, G. Ferrand, P. Gastinel, F. Gougnaud, M. Jacquemet, C. Madec, P.A.P. Nghiem, D. Uriot
    CEA/IRFU, Gif-sur-Yvette, France
  • P. Bertrand, M. Di Giacomo, R. Ferdinand, J.-M. Lagniel
    GANIL, Caen, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the superconducting linac (SARAF-LINAC Project). This paper presents to the accelerator community the status at August 2016 of the SARAF-LINAC Project.  
slides icon Slides MOOP01 [4.978 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOOP01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC014 Beam Dynamics Simulations of a High Charge S-Band Photoinjector for Electron Beam Imaging Experiments gun, electron, booster, simulation 97
 
  • Y.R. Wang
    AAI/ANL, Argonne, Illinois, USA
  • S. Cao, Z.M. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
  • W. Gai
    ANL, Argonne, Illinois, USA
  • J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  A major challenge for high energy density physics is to measure properties of matter under extreme states of temperature and pressure that only occur in a time scale of 10 ns to 1 μs. Here we propose to use a single shot electron beam from an S-band photoinjector with enough energy to penetrate the material as a diagnostic capable of time resolution (< ns). In this paper, we report on the primary beam dynamics simulation of a S-band photocathode electron gun and accelerator that capable of producing up to 10 nC charge with high enough energy. Optimizations of the system parameters, including gun, focusing solenoid and acceleration field are performed using particle tracking code. The beam-line is designed to be installed in the Institute of Modern Physics(IMP) electron accelerator centre for high precision electron imaging experimental studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC015 Development Status of FRIB On-line Model Based Beam Commissioning Application cavity, lattice, linac, quadrupole 100
 
  • Z.Q. He, M.A. Davidsaver, K. Fukushima, D.G. Maxwell, G. Shen, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
 
  Funding: The work is supported by the U.S. National Science Foundation under Grant No. PHY-11-02511, and the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The new software FLAME has been developed to serve as physics model used for on-line beam commissioning applications. FLAME is specially designed to cover FRIB modeling challenges to balance between speed and precision. Several on-line beam commissioning applications have been prototyped based on FLAME and tested on the physics application prototyping environment. In this paper, components of the physics application prototyping environment are firstly described. Then, the design strategy and result of the four major applications: baseline generator, cavity tuning, orbit correction, transverse matching, are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRC020 Primary Beam Dynamic Simulation of Double Drift Double Buncher System for SPES Project rfq, simulation, ion, focusing 117
 
  • A.V. Ziiatdinova
    MEPhI, Moscow, Russia
  • L. Bellan, M. Comunian, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.V. Ziiatdinova
    ITEP, Moscow, Russia
 
  SPES (Selective Production of Exotic Species) is a facility intended for production of neutron-rich Radioactive Ion Beams (RIBs) at the National Institute of Nuclear Physics (INFN-LNL, Legnaro, Italy). Exotic nuclei production based on the ISOL (Isotope Separation On-Line) technology using UCx target. Neutron-rich nuclei will be generated by uranium fission under the influence of proton beam from cyclotron. After that, RIBs will be reaccelerated by the ALPI (Acceleratore Lineare Per Ioni). RFQ (Radio Frequency Quadrupole) will be used as a front-end part of the ALPI. Double drift double buncher system is planned to install before RFQ for increasing transmission. This article is dedicated to beam dynamic simulation and laying-out of transport line at section before ALPI.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR013 Investigations on Electron Beam Imperfections at PITZ electron, laser, simulation, gun 165
 
  • M. Krasilnikov, P. Boonpornprasert, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, O. Lishilin, G. Loisch, D. Melkumyan, A. Oppelt, G. Pathak, Y. Renier, T. Rublack, F. Stephan, G. Vashchenko, Q.T. Zhao
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • C. Hernandez-Garcia
    JLab, Newport News, Virginia, USA
 
  Since more than a decade, the photo injector test facility at DESY, Zeuthen site (PITZ), has developed and optimized high brightness electron sources for modern Free Electros Lasers like FLASH and the European XFEL. Despite a very high performance of the photo injector was experimentally demonstrated, several discrepancies between measurements and beam dynamics simulations have been revealed. Although the optimized measured values of the projected transverse emittance are close to those obtained from the beam dynamics simulations, the corresponding experimental machine parameters show certain systematic deviations from the simulated optimized setup. As a source for these deviations, electron beam imperfections were experimentally investigated. This includes studies on bunch charge production, electron beam imaging using the RF gun with its solenoid, and investigations on the transverse asymmetry of the electron beam generated in a rotationally symmetric gun cavity. Experimental studies were supplied with corresponding beam dynamics simulations. The paper reports on results of these studies.  
poster icon Poster MOPLR013 [2.140 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR016 Status of the Injection System of the CLARA FEL Test Facility gun, cavity, FEL, cathode 174
 
  • B.L. Militsyn, D. Angal-Kalinin, R.K. Buckley, R.J. Cash, J.A. Clarke, L.S. Cowie, B.D. Fell, P. Goudket, T.J. Jones, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, T.C.Q. Noakes, B.J.A. Shepherd, R. Valizadeh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • V.V. Paramonov
    RAS/INR, Moscow, Russia
 
  The 250 MeV CLARA FEL test facility is now under construction at Daresbury Laboratory. Electron beam for this facility is provided by two normal conducting S-band photocathode guns: a 10 Hz 2.5 cell gun earlier used as the injector for the VELA machine, and a 400 Hz 1.5 cell gun now under commissioning. At the initial stage of Phase I CLARA will operate with the 10 Hz gun and a 45 MeV 2 m long linac section working as a buncher and/or booster. The beam will be deflected into the existing VELA beamline with an S-bend and directed to the spectrometer line for analysing beam properties or into one of two VELA user areas. The 400 Hz gun will be installed in the VELA beamline for detailed high power RF and beam commissioning in the VELA beam diagnostics suite. As the 400 Hz gun is equipped with an interchangeable photocathode it is possible to investigate different metal photocathodes and select the one providing minimal beam emittance at highest quantum efficiency. A state of the art photocathode preparation system is under commissioning at Daresbury. After commissioning the 400 Hz gun will be installed to the CLARA beam line to deliver high energy, high repetition rate beams for the FEL facility, and the 10 Hz gun will be returned to the VELA beam line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR057 Commissioning of the High Intensity Proton Source Developed at INFN-LNS for the European Spallation Source proton, rfq, plasma, diagnostics 261
 
  • L. Neri, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, L. Celona, F. Chines, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, A. Massara, A. Maugeri, S. Passarello, G. Pastore, A. Seminara, A. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • M.J. Ferreira, O. Midttun
    ESS, Lund, Sweden
  • O. Midttun
    University of Bergen, Bergen, Norway
 
  At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) the commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started some weeks ago. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Commissioning plan and preliminary characterization are also presented, with the aim to satisfy the requirement above.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOP08 On Magnetic Flux Trapping in Superconductors niobium, experiment, cavity, SRF 402
 
  • R.G. Eichhorn, J. Hoke, Z. Mayle
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Magnetic flux trapped on the cool-down has become an important factor in the performance in superconducting cavities. We have conducted flux trapping experiments on samples that reveal a very interesting feature of the mechanism on flux trapping which might impact magnetic shielding concepts of future cryomodules.  
slides icon Slides TUOP08 [1.787 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUOP08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC004 Frequency Spectra From Solenoid Lattice Orbits lattice, focusing, ion, linac 417
 
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
  • S.M. Lidia
    FRIB, East Lansing, USA
 
  Multi-charge state heavy ion beams have been proposed to increase average beam intensity in rare isotope drive linacs. However, the dynamics of multi-charge state beams make it challenging to optimize the beam quality in low energy linacs. One of the primary complications is that the multiple charge states introduce different focusing effects in the beam dynamics. This leads to a large frequency spectrum in the transverse motion of the beam centroid. Matlab simulations are used to describe how the frequency spectrum of the centroid transforms when the reference charge state is changed in accelerating, space charge free solenoid lattices. These frequency shifts can then be used to predict the behavior of beam of known composition using the frequency spectrum of BPM signals.  
poster icon Poster TUPRC004 [1.192 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC005 Source and LEBT Beam Preparation for IFMIF-EVEDA RFQ rfq, emittance, simulation, injection 420
 
  • L. Bellan, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P.-Y. Beauvais, B. Bolzon, N. Chauvin
    CEA/DSM/IRFU, France
  • L. Bellan
    Univ. degli Studi di Padova, Padova, Italy
  • P. Cara
    Fusion for Energy, Garching, Germany
  • H. Dzitko
    F4E, Germany
  • R. Gobin, F. Senée
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • R. Ichimiya, A. Kasugai, M. Sugimoto
    JAEA, Aomori, Japan
  • A. Marqueta, F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  The commissioning phase of the IFMIF-EVEDA RFQ requires a complete beam characterization with simula-tions and measurements of the beam input from the IFMIF-EVEDA ion source and LEBT, in order to reach the RFQ input beam parameters. In this article, the simula-tions results of the complex source-LEBT with the corre-sponding set of measurements and their impact on the commissioning plan will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC010 Multispecies Simulation of the FRIB Frontend Near the ECR Sources with the Warp Code dipole, simulation, ECR, space-charge 434
 
  • K. Fukushima, S.M. Lund
    FRIB, East Lansing, USA
  • C.Y. Wong
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Grant No. PHY-1102511.
The linear accelerator in the Facility for Rare Isotope Beams (FRIB) will use Electron Cyclotron Resonance (ECR) sources. ECR sources can generate a high-brightness DC beam with high charge states. However, the ECR sources produce numerous species that must be collimated to one or two target species with minimal degradation to beam quality. The first stage of this collimation is accomplished in a tight 90 degree dipole bend with a wide aperture and slanted pole faces to provide additional focusing. We report on simulations for the high-rigidity U ion operation using linked 2D xy-slice runs in the straight section upstream of the bend and steady-state 3D simulations in the dipole bend comparing simulations with both ideal (sector) and full 3D field maps of the dipole magnet. Issues associated with placing a 3D dipole field with fringe on a bent simulation coordinate system are addressed. Placement of the dipole bend is optimized consistent with the 3D field and is found to closely correspond to the ideal field center. Minimal problems are found (small centroid shift and distribution distortions) due to 3D space-charge effects in the species separation within the bend when using simple fractional neutralization factors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR028 Alternative Design for the RISP Pre-Stripper Linac linac, cryomodule, simulation, cavity 531
 
  • B. Mustapha, Z.A. Conway, M.P. Kelly, P.N. Ostroumov, A.S. Plastun
    ANL, Argonne, USA
  • J.-H. Jang, H. Jin, H.J. Kim, J.-W. Kim
    IBS, Daejeon, Republic of Korea
 
  Funding: This work was supported by the work-for-other grant WFO8550H titled "Pre-conceptual design, cost and schedule estimate of the 18.5 MeV/u Pre-stripper linac for the RISP/IBS"
In a collaborative effort between Argonne's Linac Development Group and the RISP project team at the Korean Institute for Basic Science, we have developed an alternative design for the pre-stripper section of the RISP driver linac. The proposed linac design takes advantage of the recent accelerator developments at Argonne, namely the ATLAS upgrades and the Fermilab PIP-II HWR Cryomodule. In particular, the state-of-the-art performance of QWRs and HWRs, the integrated steering correctors and clean BPMs for a compact cryomodule design. To simplify the design and avoid frequency transitions, we used two types of QWRs at 81.25 MHz. The QWRs were optimized for β ~ 0.05 and ~ 0.11 respectively. Nine cryomodules are required to reach the stripping energy of 18.5 MeV/u. Following the lattice design optimization, end-to-end beam dynamics simulations including all sources of machine errors were performed. The results showed that the design is tolerant to errors with no beam losses observed for nominal errors. However, the robustness of the design could be further improved by a modified RFQ design, better optimized with the multi-harmonic buncher located upstream. This could lead to a significant reduction in the longitudinal beam emittance, offering much easier beam tuning and more tolerance to errors. The proposed design and the simulation results will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR030 First FRIB β=0.53 Prototype Coldmasss Build cavity, cryomodule, vacuum, SRF 538
 
  • D.R. Victory, K. Elliott, B. Oja, J.T. Popielarski, M.S. Wilbur
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661, the State of Michigan and Michigan State University.
The β=0.53 coldmass consists of eight Superconducting Radio Frequency (SRF) β=0.53 cavities, eight Fundamental mode Power Couplers (FPC), and one 8 T solenoid. This is the first coldmass with this version of cavity and it has brought new challenges to overcome. The Facility for Rare Isotope Beams (FRIB) contains 18 cryomodules with β=0.53 cavity coldmasses, and this type of coldmass is the highest power and most produced ones in FRIB. During the final cleaning stage and the cavity assembly, particle detection equipment is used to verify the cavity cleanliness levels for cavity certification test and for coldmass assembly. This method allows for cleanliness detection of specific areas inside the cavity at any time a vacuum flange is off. The fixtures, techniques and procedures used to build the β=0.53 coldmasses will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR033 First FRIB β=0.041 Production Coldmass Build cavity, SRF, alignment, cryomodule 541
 
  • K. Elliott, S.J. Miller, B. Oja, J.T. Popielarski, L. Popielarski, D.R. Victory, M.S. Wilbur, T. Xu
    FRIB, East Lansing, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661, the State of Michigan and Michigan State University.
Three β=0.041 cryomodules are required for the Facility for Rare Isotope Beams (FRIB) accelerator. Cleanroom assembly of all three coldmasses for these cryomodules has been completed. The cleanroom assembly includes; the superconducting radio frequency (SRF) cavities, the superconducting solenoids, fundamental power couplers (FPC), beam position monitors, alignment rail, and transport cart. This paper will provide an overview of the techniques and procedures used to assemble this cavity string such that it can be used in the FRIB accelerator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR067 Solenoid/Magnetic Shielding Test Results in FRIB-1&2 Cryomodules cryomodule, cavity, shielding, dipole 607
 
  • D. Luo, H. Ao, E.E. Burkhardt, J. Casteel, A. Ganshyn, W. Hartung, M.J. Holcomb, J.T. Popielarski, K. Saito, S. Shanab, E. Supangco, M. Thrush
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University.
Recently we did bunker tests for FRIB first cryomodule (CM-1) and second one (CM-2) which houses 0.085 QWRs and solenoid packages. Their performances were successfully validated in the full configuration. This paper reports the solenoid package tests results.
 
poster icon Poster TUPLR067 [4.899 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE1A01 PIP-II Injector Test: Challenges and Status rfq, cryomodule, operation, SRF 641
 
  • P. Derwent, J.-P. Carneiro, J.P. Edelen, V.A. Lebedev, L.R. Prost, A. Saini, A.V. Shemyakin, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PXIE is under construction. It includes a 10 mA DC, 30 keV H ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the PXIE warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.  
slides icon Slides WE1A01 [9.457 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-WE1A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH1A03 Development of New Heavy Ion Linacs at GSI linac, emittance, DTL, ion 688
 
  • L. Groening, S. Mickat
    GSI, Darmstadt, Germany
 
  The heavy ion linac UNILAC at GSI will be upgraded in order to meet the beam requirements imposed by the upcoming FAIR facility. This upgrade includes several innovative techniques and applications. They comprise a new gaseaous stripper with enhanced efficiency, full 4d transverse emittance measurements, a round-to-flat beam adaptor, asymmetric transverse focusing along the new Alvarez DTL, optimized shape of the drift tube surface w.r.t. shunt impedance per surface field, and a field stabilization and tuning scheme without post-couplers. Additionally, we report on development of a super-conducting cw linac for intermediate mass ions which will be dedicated to production of super heavy elements close to the Coulomb barrier.  
slides icon Slides TH1A03 [3.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH1A03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC013 Design of a FRIB Half-Wave Pre-Production Cryomodule linac, cryogenics, vacuum, alignment 795
 
  • S.J. Miller, H. Ao, B. Bird, G.D. Bryant, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, A. Facco, W. Hartung, J.D. Hulbert, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, M. Shuptar, J. Simon, S. Stark, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu, Z. Zheng
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • M.P. Kelly
    ANL, Argonne, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
The driver linac for the Facility for Rare Isotope Beams (FRIB) will require the production of 48 cryomodules (CMs). In addition to the β=0.085 quarter-wave CM, FRIB has completed the design of a β=0.53 half-wave CM as a pre-production prototype. This CM will qualify the performance of the resonators, fundamental power couplers, tuners, and cryogenic systems of the β=0.53 half-wave design. In addition to the successful systems qualification; the β=0.53 CM build will also verify the FRIB bottom up assembly and alignment method on a half-wave CM type. The lessons learned from the β=0.085 pre-production CM build including valuable fabrication, sourcing, and assembly experience have been applied to the design of β=0.53 half-wave CM. This paper will report the design of the β=0.53 half-wave CM as well as the CM interfaces within the linac tunnel.
 
poster icon Poster THPRC013 [0.954 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC024 Polarity Check of the FRIB Cryomodule Solenoids by Measuring Leakage Magnetic Field cryomodule, dipole, vacuum, linac 821
 
  • H. Ao, D. Luo, F. Marti, K. Saito, S. Shanab
    FRIB, East Lansing, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE SC0000661.
We observed the outside magnetic field of the first β=0.085 production cryomodule while a solenoid and steering dipoles are under operation. This measurement aims to check the polarity on these magnets after the final installation in the accelerating tunnel. This paper also shows the residual magnetic field variation through the degaussing process of these magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRC028 Deflector Design for Spin Rotator in Muon Linear Accelerator dipole, simulation, experiment, vacuum 830
 
  • S. Artikova
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • T. Mibe, M. Otani
    KEK, Tsukuba, Japan
 
  A muon g-2/EDM experiment based on muon linear accelerator was proposed for the J-PARC muon facility. In this experiment, the ultra-slow muons created in muonium target region will be accelerated to 210 MeV kinetic energy then will be injected into the muon storage ring to measure the decay products depending on the muon spin. Therefore, a spin rotator (device) is a key component of the muon linac. Spin rotator consists of a pair of combined electrostatic and magnetic deflectors and a pair of solenoids which will be placed in between these two deflectors. In this paper, we report the design of these two dispersion-free deflectors and the simulation results of the device performance will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR026 Radio Frequency Surface Plasma Source With Solenoidal Magnetic Field plasma, ion, ion-source, electron 902
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • G. Dudnikova
    UMD, College Park, Maryland, USA
  • G. Dudnikova
    ICT SB RAS, Novosibirsk, Russia
  • B. Han, S. Murrey, C. Stinson
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.R. Pennisi, C. Piller, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: The work was supported in part by US DOE Contract DE-AC05-00OR22725 and by STTR grant, DE-SC0011323.
Operation of Radio Frequency surfaces plasma sources (RF SPS) with a solenoidal magnetic field are described. RF SPS with solenoidal and saddle antennas are discussed. Dependencies of beam current and extraction current on RF power, gas flow, solenoidal magnetic field are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)