Solenoid/Magnetic Shielding Test Results in FRIB-1&2 Cryomodule D. Luo*, H. Ao, E. Burkhardt, J. Casteel, A. Ganshyn, W. Hartung, M. Holcomb, J. Popielarski, K. Saito, S. Shanab, E. Supangco, M. Thrush

Introduction

FRIB-1 Cryomodule (CM-1)

- 3 In-house designed Solenoid packages
- 8 beta=0.085 Quarter wave resonators(QWRs) • Local Magnetic shield
- Lower material cost
- Shield from both earth magnetic field and solenoid magnetic field
- Adopting low cost Mu-metal for promising shield material test
- CM-2 has the same design as CM-1, except using A4K for all cavities and solenoid produced by vendor

Solenoid Package

Solenoid Package Design (CST Studio)

Field Distribution

Solenoid Package Position

Field Distribution

- Main solenoid: focusing
- Dipoles (Steering Coils): direction changing
- Bucking coils: Magnetic fringe field cancelation (No Yoke)

 Table 1: FRIB 50 cm Solenoid Package
4.5 + 0.5 / - 0.0 K Operation temperature ≤ 90.9 A Solenoid nominal curren ≥ 13.6 T²m $B^2 dz$ Peak solenoid field on beam axis ≥8.0 T $\leq 270 \quad \mathrm{G}^1$ Fringe field

¹ At magnetic shield on the magnetic shield surface.

Local Magnetic Shielding

Mag	netic per	meability ≥	≥ 10000 at 25 I 1 mm for QWF
	Thickn	less 1:	
Table	Table 3: Dynamic Heat Load for Cavities @		
	Cavity	Dynamic heat load [W]	Shielding Material
	C#1 ²	6.2	Mu-metal
	C#2	2.4	Mu-metal
	C#3	2.5	Mu-metal
	C#4	1.0	Mu-metal
	C#5	2.4	A4K
	C#6	2.5	A4K
	C#7	2.4	A4K

sured under 7 MV/m instead of 5.6 MV/m for all other cavities.

*<u>luo@frib.msu.edu</u>

Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

CM-1 Solenoid Package Test

- Excite solenoid, change ramping rate (9:00 - 10:17)
- Polarity change (10:19 10:28) • Excite dipoles alone and together
- (10:41-11:22)
- Excite all coils (11:50-12:20)
- Integral test: package and nearest cavities were all turned on (not shown)
- Degaussing

Result

- Ramping rate maximum: 0.5 A/s
- Stable during Polarity changing
- Stable work together
- Stable and not influence cavity performance
- Validated Mu-metal (μ>10000 @ 25 K, 1/3 cost of A4K) not worse than A4K

CM-2 Solenoid Package Test

Procedures

- Same procedures as in CM-1
- Integral test as shown in right figure (15:07-16:06)

Result

- Ramping rate maximum: 0.5 A/s
- Stable during Polarity changing
- Stable work together
- Stable and not influence cavity performance
- Validated Mu-metal (μ>10000 @ 25 K, 1/3 cost of A4K) not worse than A4K

PID Controller

- Set-point is 30 mV
- Picked 14:38 16:10, within the test time, see upper graph time line
- Work combine with cooling system

Cryomodule Cooling System

Conclusion

- packages showed robust and stable quality.
- magnetic-field-caused cavity quench.
- for future use due to low cost (1/3 of A4K).

Reference

conference

Nuclear Physics.

1. Both CM-1 in-house-made solenoid packages and CM-2 first-vendor-produced solenoid

2. Bucking coils + local magnetic shield give enough shielding and successfully prevented

3. Mu-metal (µ>10000 @ 25 K) showed similar reliability, we will order Mu-metal shielding

[1] Z. Zheng et al, LINAC 16, Proc. 28th LINAC, East Lansing, USA, Sep. 25-30, 2016, paper THPRC023, this

[2] S. Shanab et al., Internal report, FRIB, East Lansing, USA, Rep. FRIB-T30602-TR-000050-R001, Jul. 27, 2015 [3] K. Saito et al, LINAC 14, Proc. 27th LINAC, Geneva, Switzerland, Aug. 31 - Sep. 5, 2014, paper TH10A02 [4] K.~Saito et al, Internal report, FRIB, East Lansing, USA, Rep. FRIB-T31202-TD-000670-R001, Oct. 10, 2014 [5] J. Simon et al, Internal report, FRIB, East Lansing, USA, Rep. FRIB-T30602-PR-000349-R002, Sep. 13, 2016 [6] J. Simon et al, Internal report, FRIB, East Lansing, USA, Rep. FRIB-T30602-PR-000369-R002, Sep. 13, 2016

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of

