Keyword: booster
Paper Title Other Keywords Page
MOPRC014 Beam Dynamics Simulations of a High Charge S-Band Photoinjector for Electron Beam Imaging Experiments gun, solenoid, electron, simulation 97
 
  • Y.R. Wang
    AAI/ANL, Argonne, Illinois, USA
  • S. Cao, Z.M. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
  • W. Gai
    ANL, Argonne, Illinois, USA
  • J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  A major challenge for high energy density physics is to measure properties of matter under extreme states of temperature and pressure that only occur in a time scale of 10 ns to 1 μs. Here we propose to use a single shot electron beam from an S-band photoinjector with enough energy to penetrate the material as a diagnostic capable of time resolution (< ns). In this paper, we report on the primary beam dynamics simulation of a S-band photocathode electron gun and accelerator that capable of producing up to 10 nC charge with high enough energy. Optimizations of the system parameters, including gun, focusing solenoid and acceleration field are performed using particle tracking code. The beam-line is designed to be installed in the Institute of Modern Physics(IMP) electron accelerator centre for high precision electron imaging experimental studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPRC014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR065 High-Gradient X-band Structures for Proton Energy Booster at LANSCE linac, proton, cavity, klystron 280
 
  • S.S. Kurennoy, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. Using superconducting RF cavities with gradients ~15 MV/m after the existing linac would result in a long and expensive booster. We propose accomplishing the same with a much shorter cost-effective booster based on normal conducting high-gradient (~100 MV/m) RF accelerating structures. Such X-band high-gradient structures have been developed for electron acceleration and operate with typical RF pulse lengths below 1 us. They have never been used for protons because typical wavelengths and apertures are smaller than the proton bunch sizes. However, these limitations do not restrict proton radiography (pRad) applications. A train of very short proton bunches with the same total length and charge as the original long proton bunch will create the same single radiography frame, plus pRad limits contiguous trains of beam micro-pulses to below 60 ns to prevent blur in images. For a compact pRad booster at LANSCE, we explore feasibility of two-stage design: a short S-band section to capture and compress the 800-MeV proton beam followed by the main high-gradient X-band linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP106016 High Power RF Requirements for Driving Discontinuous Bunch Trains in the MaRIE Linac linac, cavity, beam-loading, electron 320
 
  • J.T. Bradley III, D. Rees, A. Scheinker, R.L. Sheffield
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the US Department of Energy.
The MaRIE project will use a superconducting linac to provide 12 GeV electron bunches to drive an X-ray FEL and to do electron radiography. Dynamic experiments planned for MaRIE require that the linac produce a series of micropulses that can be irregularly spaced within the macropulse, and these patterns can change from macropulse to macropulse. Irregular pulse structures create a challenge to optimizing the design of the RF and cryogenic systems. General formulas for cavities with beam loading can overestimate the power required for our irregular beam macropulse. The differing beam energy variations allowed for the XFEL and eRad micropulses produce cavity voltage control requirements that also vary within the macropulse. The RF pulse driving the cavities can be tailored to meet the needs of that particular beam macropulse because the macropulse structure is known before the pulse starts. We will derive a toolkit that can be used to determine the required RF power waveforms for arbitrary macropulse structures. We will also examine how the irregular RF power waveforms can impact RF and cryogenic system cost tradeoffs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRC016 S-Band Booster Design and Emittance Preservation for the Awake e-Injector emittance, linac, plasma, electron 449
 
  • O. Mete Apsimon, R. Apsimon, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • S. Döbert
    CERN, Geneva, Switzerland
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  AWAKE is a proton driven plasma wakefield acceleration experiment at CERN which uses the protons from the SPS. It aims to study the self modulation instability of a proton bunch and the acceleration of an externally injected electron beam in the plasma wakefields, during the so called Phase II until the technical stop of LHC and its injector chain (LS2) in 2019. The external electron beam of 0.1 to 1nC charge per bunch will be generated using an S-band photo injector with a high QE semiconducting cathode. A booster linac was designed to allow variable electron energy for the plasma experiments from 16 to 20 MeV. For an RF gun and booster system, emittance control can be highlighted as a challenging transmission task. Once the beam emittance is compensated at the gun exit and the beam is delivered to the booster with an optimum beam envelope, fringing fields and imperfections in the linac become critical for preserving the injection emittance. This paper summarises the rf design studies in order to preserve the initial beam emittance at the entrance of the linac and alternative mitigation schemes in case of emittance growth.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR068 Progress and Design Studies for the ATLAS Multi-User Upgrade kicker, ECR, injection, linac 610
 
  • B. Mustapha, P.N. Ostroumov
    ANL, Argonne, USA
  • A. Perry
    Soreq NRC, Yavne, Israel
 
  Funding: This work was supported by the U.S. DOE Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, a DOE Office of Science User Facility.
The motivations and the concept for the multi-user upgrade of the ATLAS facility at Argonne were presented at recent conferences. With the near completion of the integration of the CARIBU-EBIS for more pure and efficient charge breeding of radioactive beams, more effort is being devoted to study the design options for a potential ATLAS mutli-user upgrade. The proposed upgrade will take advantage of the pulsed nature of the EBIS beams and the cw nature of ATLAS, in order to simultaneously accelerate beams with very close charge-to-mass ratios. In addition to enhancing the nuclear physics program, beam extraction at different points along the linac will open up the opportunity for other possible applications. Different beam injection and extraction schemes are being studied and will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2A01 The Linac Laser Notcher for the Fermilab Booster laser, linac, cavity, injection 710
 
  • D.E. Johnson, K.L. Duel, M.H. Gardner, T.R. Johnson, D. Slimmer
    Fermilab, Batavia, Illinois, USA
  • S. Patil
    PriTel, Inc., Naperville, USA
  • J. Tafoya
    Optical Engines, Inc., Colorado Springs, USA
 
  In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka "notch") is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.  
slides icon Slides TH2A01 [15.170 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH2A01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)