

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

PIP-II Injector Test: Challenges and Status

Paul Derwent : representing many who have contributed Fermi National Accelerator Laboratory LINAC 2016

Fermilab Program Goals

Fermilab's goal is to construct & operate the foremost facility in the world for particle physics research utilizing intense beams.

- Neutrinos
 - MINOS+, NOvA @700 kW
 - LBNF @ multi-MW
 - SBN @ 10's kW
- Muons
 - Muon g-2 @ 17-25 kW
 - Mu2e @ 8-100 kW
- Longer term opportunities

\Rightarrow This requires more protons!

(and this statement tends to be time invariant)

"Upgrade the Fermilab Proton Accelerator Complex to produce higher intensity beams. R&D for the Proton Improvement Plan II (PIP-II) should proceed immediately, followed by construction, to provide proton beams of > 1 MW by the time of the first operation of the new long-baseline neutrino facility" – Recommendation 14, P5 report

PIP-II : Mission Need (Critical Decision 0) November 2015

🗲 Fermilab

9/28/2016

PIP-II Technology Map

Section	Freq	Energy (MeV)	Cav/mag/CM	Туре	
RFQ	162.5	0.03-2.1			
HWR (β_{opt} =0.11)	162.5	2.1-10.3	8/8/1	HWR, solenoid	
SSR1 (β _{opt} =0.22)	325	10.3-35	16/8/ 2	SSR, solenoid	
SSR2 (β _{opt} =0.47)	325	35-185	35/21/7	SSR, solenoid	
LB 650 (β _g =0.61)	650	185-500	33/22/11	5-cell elliptical, doublet*	
HB 650 (β _q =0.92)	650	500-800	24/8/4	5-cell elliptical, doublet*	

*Warm doublets external to cryomodules *All components CW-capable*

9/28/2016

🛟 Fermilab

PIP-II Injector Test:

- Scope:
 - A CW H- source delivering 5 mA at 30 keV
 - A low energy beam transport (LEBT) with beam pre-chopping
 - A CW RFQ operating at 162.5 MHz and delivering 5 mA at 2.1 MeV
 - A medium energy beam transport (MEBT) with integrated wide band chopper and beam absorbers capable of generating arbitrary bunch patterns at 162.5 MHz, and disposing of up to 5 mA average beam current
- Low β superconducting cryomodules capable of accelerating 2 mA of beam to 25 MeV
- Associated beam diagnostics
- Beam dump capable of accommodating 2 mA at full beam energy for extended periods.
- Associated utilities and shielding

PI-Test (PIP-II Injector Test): Deliverables

40 m, ~25 MeV

PXIE will address the address/measure the following:

- LEBT pre-chopping : Demonstrated
- Vacuum management in the LEBT/RFQ region : Demonstrated
- Validation of chopper performance
 - Bunch extinction, effective emittance growth
- MEBT beam absorber
 - Reliability and lifetime
- MEBT vacuum management
- CW Operation of HWR
 - Degradation of cavity performance
 - Optimal distance to 10 kW absorber
- Operation of SSR1 with beam
 - CW and pulsed operation
 - resonance control and LFD compensation in pulsed operations
- Emittance preservation and beam halo formation through the front end

Collaborators ANL: HWR LBNL:LEBT, RFQ SNS: LEBT BARC: MEBT, RF IUAC: SSR1

Ion source and LEBT layout

- Non-cesiated, filament-driven ("TRIUMF-type"), 15-mA DC, 30 keV, H⁻ volume-cusp ion source from D-Pace, Inc.
 - Added a modulator to the extraction electrode ⇒ 5 µs -16 ms pulses
 - Water-cooled Allison scanner mounted on the IS vacuum chamber
 - Modified version of previous designs from LBNL/SNS

- Atypical transport scheme motivated in part by the goal of maintaining good vacuum in the RFQ
 - Full neutralization upstream of Solenoid #2 Un-neutralized downstream

Parameter	Value	Unit	
Kinetic energy	30	keV	
Nominal/Maximum beam current, DC	5/10	mA	
Output transverse emittance over 2-5 mA current range	< 0.18	μm	
Typical pressure	~10-6	Torr	
Chopping frequency, max	60	Hz	
Pulse length	1-16600	μs	

Transport scheme pictorial

Commissioning results (LEBT straight configuration)

- Up to 10 mA (DC and pulsed) to the end of the LEBT
- Ion source and LEBT settings optimized for injection into the RFQ at 5 mA
 - Input emittance is 0.13 mm (rms, normalized)
 - Scheme with partial neutralization was realized
- >20% of beam is scraped off in Solenoid #1 and upstream
- Vacuum near the RFQ entrance is < 3 × 10⁻⁷ Torr in all modes of operation
 - ~0.5% of the beam is converted into fast protons travelling through the entire LEBT (in its straight configuration)
- Observed drifts of the beam Twiss parameters
 - Day-to-day and over long runs
 - Stabilization loops (software) have been implemented

RFQ Status

- RFQ Installation is complete.
- RFQ successfully conditioned with 120kW input power initially at 5% duty cycle,
 - Taking into account measured Q0 and beta, estimate vane potential at 66kV (10% above specified).
- 95 kW in CW operation
 - 62 kV vane potential
- J. Steimel, THPLR065
- S. Kazakov, TUPLR056

RFQ in Enclosure

8 Paul Derwent I Linac 2016

9/28/2016

LLRF Update

- Provides a wide verity of pulse widths from 100-microsecond to 5miliseconds
- Optimized the RF pulse for fast turn-on
- Demonstrated CW operation
- Demonstrated regulation to the 10⁻³
 level during a 20-µsecond beam pulse
- Provided calibration of amplifier gain and phase to ensure proper match into the RFQ
- Improved control over the RF system in the presence of temperature drifts with slow phase-feedback

Beam from RFQ

- We received permission to run the beam through RFQ on March 23, and saw an accelerated beam within an hour
 - Since March:
 - 98% ± 3%
 transmission
 efficiency
 - 1 10 mA pulsed
 beam
 - Energy measurements
 - Emittance measurements

9/28/2016

Beam Characterization

- Energy Measurement:
 - Time of Flight BPM
 - 2.11 MeV ± 0.5%
 - Preliminary : working to understand calibrations understand optics understand uncertainties

- Energy Measurement:
 - Phase difference between
 2 BPMs
 - vary buncher cavity phase and compare to simulations
 - 90° is nominal vaue

11

Beam Envelope: Simulation

- Quadrupole current scans at these locations
 - reconstruct beam size using scrapers
 - fit to give transverse emittances
 - working to verify quadrupole and scraper calibrations
 - do not have emittance values to present today

Initial Settings

- Beam Energy is 2.1 MeV
 - Measurement settings for Quads:
 - M00QD = 11.07 T/m
 - M00QF = 9.14 T/m
 - M10QD = 7.91 T/m
 - M00QF = 7.12 T/m
- Quadrupole length: 0.1 m
- Doublet length: 0.27 m
- 4 position scraping system to remove transverse tails
 - A. Saini THPRC026

9/28/2016

MEBT configuration and main features

3σ envelopes of passing bunches. 2.1 MeV, 5 mA. TraceWin.

- Focusing
 - 2 doublets and 7 triplets
 - 3 bunching cavities

Chopper

- 2 kickers
- absorber

- Bunch-by-bunch selection
 - Any bunch from initial CW train can be removed or passed

pumping

- Programmed into LLRF
- Transition from sub-10⁻⁶ Torr to UHV, particle-free near SRF
- Scraping system (see A. Saini THPRC026 Poster)

🚰 Fermilab

Components

Doublet 1

Doublet 2

All magnets have been manufactured by BARC, India and are being measured there

Triplet 3

Triplet 4

Triplet 5

- Bunching cavities are in final stage of manufacturing
 - RF amplifiers go through post-manufacturing adjustments
- Most of girders and vacuum chambers are on hand; an absorber prototype is being tested; diagnostics and scrapers are partially ready
- Kicker prototypes are ready for installation

Triplet 1

Triplet 6

MEBT stages

- MEBT is being installed in 3 main stages, different in the number of focusing elements
 - Full-length MEBT is expected to be installed in 2017

🛠 Fermilab

Half-Wave Resonator Cryomodule

Argonne National Lab

- Novel design of half-wave resonators: double conical structure to reduce peak fields and cryogenic load while providing a high shunt impedance.
- Integrate into the superconducting solenoid a return coil and x-y steering coils without additional magnetic shielding.
- Cold, low-particulate clean, beam position monitors.
- Compact lattice suitable for the acceleration of several mAs of H⁻ or proton beams.
- When finished the half-wave cryomodule will be the first superfluid helium cooled TEM-class cryomodule.

Single Spoke Resonator : Cavities

Two SSR1 cavities were received from IUAC, chemically processed and cold-tested at Fermilab. S104 yielded excellent results, S103 presented some issues with UHV flange connections, fixable

Jacketing will happen at BARC. Delivery to FNAL by **Dec 2016** for integration in SSR1 CM.

Cold Tests of SSR1 Resonators Manufactured by IUAC for the Fermilab PIP-II Project, L. Ristori et. al, SRF15 Conference

🚰 Fermilab

Status of SSR1 Cryomodule

SSR1 cryomodule – Top assembly Conceptual design: completed Final design: ~80% completed

SSR1 coldmass

Conceptual design: completed Final design: ~80% completed

SSR1 string assembly Final design: 100% completed Procurement: 100% completed

0 0

AND IS

Challenge: Detuning in the PIP-II Cavities

- PIP-II design calls for narrow bandwidth (f1/2 ≅30 Hz) cavities operating in pulsed mode
 - Narrow bandwidth makes cavities susceptible to vibration induced detuning
 - Pulsed mode LFD can excite vibrations
- PEAK detuning of PIP-II cavities must be limited to 20 Hz or less
 - PIP-II cavities will require active detuning compensation of both LFD and microphonics during routine operation
 - Will require combination of
 - best LFD compensation achieved to date
 - AND best active microphonics compensation achieved to date
 - AND 24/7 operation over hundreds of cavities for several tens of years
- No examples of large machines that require active detuning control during routine operation currently exist
- W. Schappert, Presentation TU2A03 and Poster MOPLR028

	Ν	f	Q_0	r/Q	E	L _{Effective}	Voltage	Current	Control	Losses	P _{Beam}
		MHz	10 ⁹	Ω	MV/m	m	MV	mA	%	%	kW
HWR	8	162.5	5.0	275	9.7	0.21	2.01	2	20	10	4.02
SSR1	16	325	6.0	242	10.0	0.21	2.05	2	20	10	4.10
SSR2	35	325	8.0	296	11.4	0.44	4.99	2	20	10	9.99
LB650	33	650	15.0	375	15.9	0.75	11.86	2	20	10	23.72
HB650	24	650	20.0	609	17.8	1.12	19.92	2	20	10	39.84

35 Fermilab

Schedule: PI-Test

- FY16:
 - Characterize beam through the RFQ
 - Pulsed operation: Energy, Transmission, Emittance
- FY17:
 - Pulsed & CW operation, measurements through different stages of the MEBT
 - Characterize chopping and beam parameters at entrance of SRF section
- FY18:
 - Installation of Cyro Distribution, HWR, SSR1, ancillary components
- Critical path to HWR & SSR1 operation
 - cryogenic distribution system
 - 162.5 MHz amplifiers for HWR
 - 325 MHz amplifiers for SSR1

Summary and Conclusion

- PIP-II Injector Test: integral part of the PIP-II Project R&D
- Successfully accelerated 10 mA through RFQ
 - Energy 2.11 MeV \pm 0.5%
 - >97% transmission
- MEBT installation and chopper test planned in FY17
- Half Wave Resonator and Single Spoke Resonator cryomodules scheduled for installation in FY18
- On schedule to support CD3 in FY19/20 time frame

