THPVA —  Posters Thursday 3   (18-May-17   16:00—18:00)
Paper Title Page
THPVA002 Numerical Investigation of Beam Halo From Beam Gas Scattering in KEK-ATF 4410
 
  • R.J. Yang, P. Bambade
    LAL, Orsay, France
  • K. Kubo, T. Okugi, N. Terunuma, D. Zhou
    KEK, Ibaraki, Japan
 
  To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA003 Status of the Beam Dynamics Design of the New Post-Stripper DTL for GSI-FAIR 4414
 
  • A. Rubin, X. Du, L. Groening, M. Kaiser, S. Mickat
    GSI, Darmstadt, Germany
 
  The GSI UNILAC has served as injector for all ion species since 40 years. Its 108 MHz Alvarez DTL providing acceleration from 1.4 MeV/u to 11.4 MeV/u has suffered from material fatigue and has to be replaced by a new section. The design of the new post-stripper DTL is now under development in GSI. Five Alvarez tanks with four intertank sections provide 100% transmission and low emittance growth. The intertank sections allow for a matched solution and provide place for diagnostics. Simulations along the complete Alvarez DTL were done for 238U28+ using the TraceWin code. The transversal zero current phase advance is 65' for all tanks. Results of beam dynamics simulations for six different scenarios as well as an error study for the FAIR nominal case are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA004 Pushing the Space Charge Limit: Electron Lenses in High-Intensity Synchrotrons? 4417
 
  • W.D. Stem, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Boine-Frankenheim
    GSI, Darmstadt, Germany
 
  Funding: Work is supported by BMBF contract FKZ:05P15RDRBA
Several accelerator projects require an increase in the number of particles per bunch, which is constrained by the space charge limit. Above this limit the transverse space charge force in combination with the lattice structure causes beam quality degradation and beam loss. Proposed devices to mitigate this beam loss in ion beams are electron lenses. An electron lens imparts a nonlinear, localized focusing kick to counteract the (global) space-charge forces in the primary beam. This effort is met with many challenges, including a reduced dynamic aperture (DA), resonance crossing, and beam-beam alignment. This contribution provides a detailed study of idealized electron lens use in high-intensity particle accelerators, including a comparison between analytical calculations and pyORBIT particle-in-cell (PIC) simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA005 Investigation of Electron Beam Assisted Density Boosting in Plasma Traps Using the Example of a Gabor Plasma Lens 4421
 
  • C. Beberweil, M. Droba, S. Klaproth, O. Meusel, D. Noll, H. Podlech, K. Schulte, K.I. Thoma
    IAP, Frankfurt am Main, Germany
  • S. Gammino, D. Mascali
    INFN/LNS, Catania, Italy
  • L. Malferrari, A. Montanari, F. Odorici
    INFN-Bologna, Bologna, Italy
 
  Gabor lenses are plasma traps that can be used for focusing an ion beam linearly without aberrations* by the electric field of a confined electron cloud. They combine strong electrostatic focusing with the possibility of space charge compensation and provide an attractive alternative to conventional ion beam optics in a LEBT section. The focusing performance strongly depends on the density and distribution of the enclosed electron plasma*. As the Gabor lens is usually operated close to the ion source, residual gas ionization is supposed to be the central electron generation mechanism. An electron source is introduced in order to investigate the possibility of boosting the electron density in plasma traps using the example of a Gabor lens. This way, a Gabor lens could be operated under XUHV conditions, where residual gas ionization is suppressed. The particle in cell code bender** was used to simulate the injection into the confining fields of the space charge lens in different geometrical configurations and a prototype experiment was constructed consisting of a Gabor lens and an electron source system. In this contribution, simulations and measurements will be presented.
* Schulte, K., et al. Electron cloud dynamics in a Gabor space charge lens. 2012
** Noll, D., et al. The particle-in-cell code bender and its application to non-relativistic beam transport. 2015
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA006 Space-Charge Compensation in the Transition Area Between LEBT and RFQ 4425
SUSPSIK061   use link to see paper's listing under its alternate paper code  
 
  • P.P. Schneider, D. Born, V.A. Britten, M. Droba, O. Meusel, H. Podlech, A. Schempp
    IAP, Frankfurt am Main, Germany
  • D. Noll
    CERN, Geneva, Switzerland
 
  Funding: This work is supported by the German Federal Ministry of Education and Research (BMBF) #05P15RFRBA and by HORIZON 2020 for the MYRRHA project #662186
The transition from a space charge compensated beam in the LEBT to an uncompensated beam in the RFQ will influence the beam parameters. To investigate the impact of the electric fields on the space charge compensation, an insulated cone is used as a repeller electrode in front of the RFQ. Depending on the time dependent potential of the RFQ rods respectively to the beam potential, the compensation electrons may be prevented from moving into the RF field which oozes out of the RFQ entrance. The simulation studies are performed with the particle-in-cell code bender*. The simulations may substantiate measurements at the CW-operated RFQ in Frankfurt University** as well as at the foreseen MYRRHA LEBT-RFQ interface.*** In this contribution, a study on a LEBT-RFQ interface is shown. Results of numerical and experimental investigations will be compared.
*Noll, D. et al.The Particle-in-Cell Code Bender and Its Application to Non-Relativistic Beam Transport, WEO4LR02, HB'14
**Meusel, O. et al.FRANZ Accelerator Test Bench and Neutron Source.,MO3A03, LINAC'12
***R. Salemme et al.Design Progress of the MYRRHA Low Energy Beam Line, MOPP137, LINAC'14
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA007 Matching Space-charge Dominated Electron Bunches into the Plasma Accelerator at SINBAD 4429
 
  • J. Zhu, R.W. Aßmann, U. Dorda, B. Marchetti
    DESY, Hamburg, Germany
 
  The SINBAD facility (Short and INnovative Bunches and Accelerators at DESY) is foreseen to provide sub-fs to tens of fs electron bunches for Laser Wake-Field Acceleration (LWFA) experiments. In order to avoid emittance growth in plasma cells with ultra-high accelerating gradients the injection and transport of electron bunches with beta functions of mm-size or even smaller are required. This kind of bunch is usually space-charged dominated since the energy is low (< 200 MeV) while the peak current is high for allowing the electron bunches to be used for Free Electron-Laser (FEL) generation. We present the beamline design and explore the possible beam parameters at the SINBAD linac by start-to-end simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA009 Transverse Beam Dynamics of an 8 MeV Electron Linac 4432
 
  • S. Sanaye Hajari, M. Dayyani Kelisani, H. Shaker
    IPM, Tehran, Iran
  • S. Haghtalab
    Shahid Beheshti University, Tehran, Iran
 
  The IPM Electron Linac is an 8 MeV (upgradable to 11 MeV) electron linear accelerator under development at the Institute for Research in Fundamental Science (IPM), Tehran, Iran. The linac is mainly regarded as a research project providing hands-on experience in the accelerator science and technology. However, it could serve as an x-ray source or play the injector role for a larger facility. The linac consists of a thermionic gun followed by a travelling wave buncher joined to two accelerating tubes. The transverse focusing is provided by the solenoid mag-nets over the buncher and the accelerating structures. Using the code ASTRA, the transverse beam dynamics is studied and optimized in order to limit the RF emittance. Particularly, the effect of coupler asymmetry is investigated, a beam dynamics design of the solenoid channel is presented, and the effect of the solenoid misalignment on the beam quality is examined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA010 Electron Cloud Simulations for the Main Ring of J-PARC 4436
 
  • B. Yee-Rendón, R. Muto, K. Ohmi, K. Satou, M. Tomizawa, T. Toyama
    KEK, Ibaraki, Japan
 
  The simulation of beam instabilities is a helpful tool to evaluate potential threats against the machine protection of the high intensity beams. At Main Ring (MR) of J-PARC, signals related to the electron cloud have been observed during the slow beam extraction mode. Hence, several studies were conducted to investigate the mechanism that produces it, the results confirmed a strong dependence on the beam intensity and the bunch structure in the formation of the electron cloud, however, the precise explanation of its trigger conditions remains incomplete. To shed light on the problem, electron cloud simulations were done using an updated version of the computational model developed from previous works at KEK. The code employed the signals of the measurements to reproduce the events seen during the surveys.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA011 Beam Dynamics Studies on Low and Medium Energy Beam Transport With Intense H Ions for J-PARC Linac 4439
 
  • S. Artikova
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Ikegami, T. Shibata
    KEK, Ibaraki, Japan
  • Y. Kondopresenter
    JAEA, Ibaraki-ken, Japan
 
  Japan Proton Accelerator Research Complex (J-PARC) linac was intensity-upgraded up to pulse current of 50 mA of H beam by replacing the ion source and the Radio Frequency Quadrupole(RFQ). We measured beam properties at the end of low energy beam transport (LEBT) line test stand under several conditions to investigate the transverse halo and space charge effects of an intense H ions. The LEBT is composed of two solenoid magnets. Furthermore, space charge neutralization effects in the residual gas were considered into account to describe the behavior of the beam phase space evolution. LEBT transmission efficiency, beam losses were estimated and optimization for beam matching into acceptance of the RFQ is studied. Two-solenoid based LEBT section is connected to the RFQ which is followed by a medium energy beam transport (MEBT) line. In this paper, we discuss the outcomes of beam emittance measurements and the results from beam dynamics simulations throughout LEBT and the RFQ acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA012 Transverse Impedance Measurement in SuperKEKB 4442
 
  • N. Kuroo
    UTTAC, Tsukuba, Ibaraki, Japan
  • T. Ishibashi, T. Mimashi, K. Ohmi, Y. Ohnishi, K. Shibata, Y. Suetsugu, S. Terui, M. Tobiyama, D. Zhou
    KEK, Ibaraki, Japan
 
  In KEK(Japan), SuperKEKB project is progressing toward upgrade. This project aims improvement luminosity (8×1035 cm-2s- 1) which is 40 times of the performance of the KEKB accelerator. In Phase 1 of this project, a performance test as storage ring was carried out. Understanding of ring Impedance/wake is an important subject in phase I. Measurement of Head Tail Damping using Turn by Turn monitor was performed to evaluate impedance/wake. Betatron motion is excited by kicker and its damping is measured for several parameters sets of bunch current and chromaticity in both HER and LER. The wake field was calculated from the decrement of betatron amplitude. We present the wake field which is cross-checked with tune shift based on the current dependence.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA013 Benchmarking of the ESS LEBT in TraceWin and IBSimu 4445
 
  • Ø. Midttun
    University of Bergen, Bergen, Norway
  • Y.I. Levinsen, R. Miyamoto, D.C. Plostinar
    ESS, Lund, Sweden
 
  The modeling of the proton beam in the ESS accelerator starts with a beam distribution as an input to the TraceWin code currently used as the simulation tool. This input is typically a Gaussian distribution, a distribution from other codes, or data from an emittance measurement. The starting point of these simulations is therefore located somewhere along the low energy beam transport (LEBT) close to the ion source. In this paper, we propose to use IBSimu to model the beam extraction from the ion source, which provides an input beam distribution to TraceWin. IBSimu is a computer simulation package for ion optics, plasma extraction, and space charge dominated ion beam transport. We also present a benchmarking of the beam tracking through the LEBT using both these tools, and propose a transition interface to handover the beam distribution from IBSimu to TraceWin.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA015 Application of Modified KV-Distributions to Study the Phase Portrait Transformation of Intense Bunches in Magnetic Fields 4448
 
  • H.Y. Barminova
    MEPhI, Moscow, Russia
 
  Modified KV-distribution functions are applied to study the intense bunch behavior in transverse magnetic fields. The functions used allow to consider both the emittance-dominated and charge-dominated bunches in 2D and 3D approximations. Peculiarities of the bunch phase portrait transformation in magnetic fields of achromatic structures are discussed. Particular case is proved to exist characterized by the absence of the emittance transfer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA017 Integer Spin Resonance Crossing With Preserving Beam Polarization on VEPP-4M 4451
 
  • A.K. Barladyan, A.Yu. Barnyakov, S.A. Glukhov, S.E. Karnaev, E.B. Levichev, S.A. Nikitin, I.B. Nikolaev, I.N. Okunev, P.A. Piminovpresenter, A.G. Shamov, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  The method to preserve the electron beam polarization on the VEPP-4M storage ring during acceleration with crossing the integer spin resonance energy E=1763 MeV is described. It is based on the use of the non-compensated longitudinal magnetic field of the KEDR detector. This method has been successfully applied for the needs of the R measurement experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA019 Self-consistent Space Charge Tracking Method based on Lie Transform 4454
 
  • E. Laface, J.F. Esteban Müller
    ESS, Lund, Sweden
 
  In this paper we propose to describe the self-force of a particles beam, known as space charge, as an Hamiltonan term dependent on the distribution of the particles' coordinates: Hsc = Hsc(ρ(x,y,z)). This Hamiltonian is then used, together with the kinetic component Hk in a Lie transform to generate a transport map by e-L:Hk +Hsc: where the Lie operator :Hk + Hsc: is defined according to the Dragt's notation [1]. Then the Lie transform is used to transport directly the distribution function ρ(x, y, z) in a self-consistent iterative algorithm. The result of this proof-of-concept idea is verified on a drift space and on a FODO channel and compared with a traditional multi-particles simulation code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA020 Distribution and Extreme Loss Analysis in the ESS Linac: A Statistical Perspective 4458
 
  • A.L. Pedersen
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • D. Anevski
    Lund University, Lund, Sweden
  • M. Eshraqi, R. Miyamoto
    ESS, Lund, Sweden
 
  The report takes a statistical approach in the study of distribution evolution of the proton beam within the ESS linac and reports a new technique of pinpointing the non-linear space-charge effect of the propagating proton beam. By using the test statistic from the nonparametric Kolmogorov-Smirnov test the author visualises the change in the normalised distributions by looking at the supremum distance between the cumulative distribution functions in comparison, and the propagation of the deviation throughout the ESS linac. This approach identifies changes in the distribution which may cause losses in the linac and highlights the parts where the space-charge has big impact on the beam distribution. Also, an Extreme Value Theory approach is adopted in order to quantify the effects of the non linear forces affecting the proton beam distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA021 Dynamics of Spectator Particles in Space-Charge Fields of Mismatched Beams With Cross-Plane Coupling 4462
 
  • M. Holz, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  In accelerators with high beam power, even moderate beam losses must be avoided. These losses are due to particles reaching large transverse amplitudes that form a low density halo orbiting the beam core. To study the beam halo formation, we place a spectator particle outside the beam core and let it interact with the core's electric field. The core, we model by a self-consistent transverse Gaussian beam including non-linear space charge forces and cross-plane coupling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA022 Comparison of Different Methods to Calculate Induced Voltage in Longitudinal Beam Dynamics Codes 4465
 
  • D. Quartullo, J. Repond
    CERN, Geneva, Switzerland
  • M. Migliorati
    University of Rome La Sapienza, Rome, Italy
 
  Collective effects in longitudinal beam dynamics simulations are essential for many studies since they can perturb the RF potential, giving rise to instabilities. The beam induced voltage can be computed in frequency or time domain using a slicing of the beam profile. This technique is adopted by many codes including CERN BLonD. The slicing acts as a frequency filter and cuts high frequency noise but also physical contributions if the resolution is not sufficient. Moreover, a linear interpolation usually defines the voltage for all the macro-particles, and this can be another source of unphysical effects. The MuSiC code describes interaction between the macro-particles with the wakes generated only by resonator impedances. The complications related to the slices are avoided, but the voltage can contain high frequency noise. In addition, since the computational time scales with the number of resonators and macro-particles, having a large number of them can be cumbersome. In this paper the features of the different approaches are described together with benchmarks between them and analytical formulas, considering both single and multi-turn wakes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA023 Studies of Longitudinal Beam Stability in CERN PS Booster After Upgrade 4469
SUSPSIK060   use link to see paper's listing under its alternate paper code  
 
  • D. Quartullo, S.C.P. Albright, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  The CERN PS Booster, comprised of four superposed rings, is the first synchrotron in the LHC proton injection chain. In 2021, after major upgrades, the injection and extraction beam energies, as well as the acceleration rate, will be increased. The required beam intensities should be a factor of two higher for nominal LHC and fixed-target beams, and the currently used narrow-band ferrite systems will be replaced by broad-band Finemet cavities in all four rings. Future beam stability was investigated using simulations with the Beam Longitudinal Dynamics (BLonD) code. The simulation results for existing situation were compared with beam measurements and gave a good agreement. An accurate impedance model, together with a careful estimation of the longitudinal space charge, was used in simulations of the future acceleration cycle in single and double RF, with phase and radial loops and controlled longitudinal emittance blow-up. Since the beam is not ultra-relativistic and fills the whole ring (h=1), the front and multi-turn back wakes were taken into account, as well as the RF feedbacks which reduce the effect of the Finemet impedance at the revolution frequency harmonics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA024 Controlled Longitudinal Emittance Blow-Up Using Band-Limited Phase Noise in CERN PSB 4473
 
  • D. Quartullo, E.N. Shaposhnikova, H. Timko
    CERN, Geneva, Switzerland
 
  Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA026 Practical Stabilisation of Transverse Collective Instabilities with Second Order Chromaticity in the LHC 4477
SUSPSIK059   use link to see paper's listing under its alternate paper code  
 
  • M. Schenk, D. Amorim, N. Biancacci, X. Buffat, L.R. Carver, R. De Maria, K.S.B. Li, E. Métral, B. Salvant
    CERN, Geneva, Switzerland
 
  The study reports on dedicated measurements made with a single nominal bunch in the LHC at 6.5 TeV. First, we show that a significant amount of second order chromaticity Q'' can be introduced in the machine in a well-controlled manner. Second, we demonstrate that the incoherent betatron tune spread from Q'' can provide beam stability through the Landau damping mechanism. This is a first step in the development of a Q'' knob to be potentially applied during regular physics operation in the LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA027 Commissioning and First Results of the IBEX Paul Trap 4481
 
  • S.L. Sheehy, E. Carr, L. Martin
    JAI, Oxford, United Kingdom
  • K. Budzik
    Warsaw University, Warsaw, Poland
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • C.R. Prior
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Intense Beam Experiment (IBEX) is a linear Paul trap designed to replicate the dynamics of intense particle beams in accelerators. Similar to the S-POD apparatus at Hiroshima University, IBEX is a small scale experiment which has been constructed and recently commissioned at the Rutherford Appleton Laboratory in the UK. Its aim is to support theoretical studies of next-generation high intensity proton and ion accelerators, complementing existing computer simulation approaches. Here we report on the status of commissioning and first results obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA028 Multi-Bunch Instabilities Measurement and Analysis at the Diamond Light Source 4485
 
  • R. Bartolini, R.T. Fielder, E. Koukovini-Platia, G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  The characterisation of the multi-bunch dynamics at the Diamond light source is performed with an advanced TMBF system that is capable of operating fast grow damp experiments thus allowing the exploration of many machine conditions. We report here the latest results of the measurement campaign, the implication on the machine impedance model and some of the intricacies of the analysis and interpretation of the experimental data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA029 Study of Single Bunch Instabilities with Transverse Feedback at Diamond 4489
 
  • E. Koukovini-Platia, R. Bartolini, A.F.D. Morgan, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  Single bunch instability studies have been carried out at Diamond with and without the transverse multi-bunch feedback (TMBF) system. Single bunch instability thresholds were measured for zero, positive and negative chromaticity values by increasing the current till the instability onset. The bunch-by-bunch feedback system was then used to suppress the motion of the bunch centroid and the new thresholds were measured in all chromaticity regimes. The feedback loop phase of the TMBF was changed from resistive to reactive as well as intermediate to find the optimal feedback settings that maximize the single bunch instability thresholds.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA030 Collective Effects Studies of the Double-Double Bend Achromat Cell at Diamond 4493
 
  • E. Koukovini-Platia, R. Bartolini, L.M. Bobb, R.T. Fielder
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  One cell of the Diamond storage ring has been converted from a double bend achromat to a double-double bend achromat (DDBA). After the successful installation and beam commissioning in November 2016, beam-based studies were done to assess the effect of the new cell on the single bunch and multi-bunch instabilities both in transverse and longitudinal planes. These are compared with the impedance estimate carried out both numerically and analytically.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA031 Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud 4497
 
  • J.S. Eldred, M. Backfish, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • S. Kato
    KEK, Ibaraki, Japan
 
  Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\% of that measured in the uncoated stainless steel beampipe.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA032 Space-Charge Simulation of Integrable Rapid Cycling Synchrotron 4501
 
  • J.S. Eldred, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA033 Towards commissioning the Fermilab Muon g-2 Experiment 4505
 
  • D. Stratakis, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • A. Fiedler, M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • S-C. Kim
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
Starting this summer, Fermilab will host a key exper-iment dedicated to the search for signals of new phys-ics: The Fermilab Muon g-2 Experiment. Its aim is to precisely measure the anomalous magnetic moment of the muon. In full operation, in order to avoid contami-nation, the newly born secondary beam is injected into a 505 m long Delivery Ring (DR) wherein it makes several revolutions before being send to the experi-ment. Part of the commissioning scenario will execute a running mode wherein the passage from the DR will be skipped. With the aid of numerical simulations, we provide estimates of the expected performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA034 Comparison of the Coupling of Dipole Motion From Bunch to Bunch in an Electron Beam Caused by Electron Clouds at CesrTA Due to Variations in Bunch Length and Chromaticity 4509
 
  • M.G. Billing, L.Y. Bartnik, J.A. Crittendenpresenter, M.J. Forster, N.T. Rider, J.P. Shanks, M.B. Spiegel, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • E.C. Runburg
    University of Notre Dame, Indiana, USA
 
  Earlier experiments at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) have probed the interaction of the electron cloud (EC) with a 2.1 GeV stored positron beam. Since a very low EC density is expected with the electron bunches, these results characterize the dependence of beam-vacuum chamber impedance interactions, which are common to both positron and electron beams. The experiments were performed on a 30-bunch electron train with a 14 ns spacing, at a fixed current of 0.75mA/bunch, at two different vertical chromaticity settings and for four different bunch lengths (or synchrotron tunes.) The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 20 turn-by-turn beam position monitors in CESR to measure the correlated bunch-by-bunch dipole motion and an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the analysis of the observations from these experiments and compare them with effects of the EC on the positron beam's dipole motion and coupling of the motion from each bunch to its succeeding bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA035 Dependence of the Coupling of Dipole Motion From Bunch to Bunch Caused by Electron Clouds at CesrTA Due to Variations in Bunch Length and Chromaticity 4512
 
  • M.G. Billing, L.Y. Bartnik, J.A. Crittendenpresenter, M.J. Forster, N.T. Rider, J.P. Shanks, M.B. Spiegel, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • E.C. Runburg
    University of Notre Dame, Indiana, USA
 
  The Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) has conducted experiments to probe the interaction of the electron cloud (EC) with a 2.1 GeV stored positron beam. These experiments investigate the dependence of beam'electron cloud interactions vs. bunch length (or synchrotron tune) at two values of the vertical chromaticity. The experiments utilized a 30-bunch positron train with a 14 ns spacing, at a fixed current of 0.75mA/bunch. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 20 turn-by-turn beam position monitors in CESR to measure the correlated bunch-by-bunch dipole motion and an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and a more detailed analysis for the coupling of dipole motion via the EC from each bunch to succeeding bunches in the train.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA037 Injection of a Self-Consistent Beam at the Spallation Neutron Source 4516
 
  • J.A. Holmes, S.M. Cousineau, T.V. Gorlov, M.A. Plum
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This research was supported by the DOE Office of Science, Basic Energy Science.
We plan to demonstrate the injection of a self-consistent beam into the Spallation Neutron Source (SNS). Self-consistent beams are defined to be ellipsoidal distributions with uniform density and to retain these properties under all linear transformations. Self-consistent distributions may generate very little halo if realized in practice. Some may also be manipulated to generate flat beams. Self-consistent distributions involve very special relationships between the phase space coordinates, making them difficult to realize experimentally. One self-consistent distribution, the 2D rotating distribution, can be painted into the SNS ring, with slight modification of the lattice. However, it is unknown how robust self-consistent distributions will be under real world transport in the presence of nonlinearities and other collective effects. This paper studies these issues and the mitigation of unwanted effects by applying realistic detailed computational models to the simulation of the injection of rotating beams into SNS. The result is a feasible prescription for the injection of a rotating self-consistent distribution into the SNS ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA039 Nanopositioning and Actuation in Extreme Environment Using Piezoelectric Multilayer Actuators and Motors 4519
 
  • C. Mangeot
    Noliac A/S, Kvistgaard, Denmark
 
  Piezoelectric devices find numerous applications in Science projects, when precise and fast positioning is needed, particularly in harsh environment. This paper reviews some of the latest environmental tests performed on piezoelectric devices, illustrating how they enable higher performance or even new technical solutions. In the field of particle accelerators and instrumentation, two applications can be mentioned: the precise goniometer to be installed in the Large Hadron Collider (LHC) and active Lorentz force detuning compensation systems*. Multilayer actuators have been demonstrated over a wide range of temperatures, from cryogenic (4K) to 220°C, in UHV and under radiation. Other examples can be mentioned within the ITER project: the In-Vessel Viewing System (IVVS) and the Electron Cyclotron Emission (ECE) diagnostic**. For these applications, a piezo motor is needed. The Piezo Actuator Drive (PAD) was demonstrated at high temperature, UHV and submitted to high magnetic fields.
* P. Bosland et al.; 'Mechanical study of the Saclay Piezo Tuner PTS (Piezo Tunning System)', CARE-Note-2005-004-SRF
** G. Taylor et al.; 'Status of the design of the ITER ECE diagnostic', EC18, 2015
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA040 Magnetic Field Computation for PMTs Shielding Optimization 4522
 
  • E. Bouquerel, O. Dorvaux, S. Kihel, M. Krauth, P. Peaupardin
    IPHC, Strasbourg Cedex 2, France
  • C. Ciemala
    IFJ-PAN, Kraków, Poland
 
  The Photon Array for the studies of Radioactive and Ion Stable beams (PARIS) is a multidetector of clusters. Each cluster is composed of 9 units of two-shells phoswiches of LaBr3/NaI scintillators optically coupled to one photomultiplier tube. PARIS will be used in combination with the VAMOS spectrometer at GANIL. During the experiment, PMTs will be exposed to the constant magnetic fringe fields produced by a quadrupole. Magnetic shielding is essential to efficiently lower the magnetic field inside the PMTs. The design and the optimization of this shield is presented. A comparison is done between the simulated and the experimental values.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA041 Progress in the Bunch-to-Bucket Transfer Implementation for FAIR 4525
 
  • T. Ferrand, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Bachmann
    TU Darmstadt, Darmstadt, Germany
  • J.N. Bai, H. Klingbeil
    GSI, Darmstadt, Germany
  • H. Damerau
    CERN, Geneva, Switzerland
 
  The transfer of bunched ion beams between various synchrotrons is required for the multi-accelerator complex FAIR, presently under construction at GSI. To avoid a dedicated distribution infrastructure for radiofrequency (RF) signals between each source and destination synchrotron, a new approach has been developed to transmit bunch and bucket phase information using synchronous Ethernet. This allows to locally regenerate all reference signals needed for the RF synchronization prior to a bunch-to-bucket transfer, as well as the triggers to the kickers. The modular and configurable hardware implementation based on the White Rabbit network progresses towards a proof-of-principle demonstrator. Besides the synchronization of revolution and RF frequencies, the bunches in the source accelerator must be aligned in azimuth with respect to the buckets in the receiving synchrotron. To validate the feasibility of this azimuthal steering, measurements have been performed with protons in the CERN PS to evaluate the longitudinal emittance growth. They are complemented with tracking simulations using the BLonD code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA042 Semi-Autonomous Device for Visual Inspection of Vacuum Beamlines of Particle Accelerators 4528
 
  • N. Schweizer
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • I. Pongrac
    GSI, Darmstadt, Germany
 
  Due to the closed structure of ultra-high vacuum beamline systems, a visual inspection of the internal pipe is hardly feasible. For instance, when opening the accelerator vacuum system, an endoscope can be used to inspect the internals. However, this proves to be impractical in case of large, curved accelerator vacuum systems with complex geometries. It is more efficient to open the system only at one or two locations and to use a mobile semi-autonomous inspection device with optical imaging. A mobile robot is currently under development in our laboratory for the planned heavy ion synchrotron SIS100 at FAIR. A multitude of vacuum chamber types with different height levels as well as gaps must be traversed reliably by the robot. We present a modular wheel-based mobile robot prototype with joints between the modules which let the robot climb to different height levels by lifting the modules successively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA044 Detector Structure Development Using Active And Passive Thermography 4531
 
  • E. Rosenthal, D. Grunwald, G. Natour
    Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany
 
  During the development and production of the mechanical support structures of the PANDA-Micro-Vertex-Detector(MVD)* experiments of passive and active thermography were applied and shown. The combination of mostly carbon-based materials enables the development of lightweight structures, which satisfy the mechanical stability and thermal requirements. The carrier structure of the MVD stripe detector is mainly composed of carbon foams, high fiber content CFC materials and PMI-based foams. This enables to selectively cool areas where heat is generated and to decouple them from the temperature-sensitive areas of the sensor system. Passive thermography is used during our development work mainly to validate the results of thermal simulations, for design optimization and for the functional control of the carrier structure. Additionally active thermography allows us to identify anomalies and thermal disturbances, which remain unnoticed in static processes. Also the investigation and characterization of adhesive layers are possible. For this purpose we developed special software algorithms which are sensitive to small-scale differences in temperature conductivity.
* PANDA Collaboration: W. Erni et al., arXiv: 1207.6581
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA045 Telecommunication Concepts for Compact, Electro-Optical and Frequency Tunable Sensors for Accelerator Diagnostics 4534
 
  • E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • I. Hosako, I. Morohashi, S. Nakajima, S. Saito, N. Sekine
    NICT, Tokyo, Japan
 
  Funding: Supported by Invitation Fellowship for Research ID No. S16704 of Japan Society for the Promotion of Science (JSPS) awarded to E.B. hosted by I.H.
Terahertz diagnostics* for investigating the properties of electron and photon beams**, especially the investigation of electron bunch instabilities, accompanied by terahertz photon bursts is increasingly employed to monitor and investigate electron bunch dynamics***. Recent advances in information and communications technology promise compact sensors based on telecom and thus industry standards. We present potential applications of such technology concepts for accelerators, including a miniature probe for electro-optical sampling, which could be employed for electron bunch electrical near-field studies, and laser sources with widely tunable pulse repetition rates adaptable for pulsed diagnostics***.
* E. Bründermann, H.-W. Hübers, M.F. Kimmitt, Terahertz Techniques, Springer-Verlag (2012).
** J.L. Steinmann et al., Phys. Rev. Lett. 117, 174802, 2016.
*** M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701, 2016.
**** I. Morohashi et al., Nano Commun Netw 10, 79, 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA046 Thermo Mechanical Study of the ESS DTL 4537
 
  • P. Mereu, M. Mezzanopresenter, C. Mingioni, M. Nenni
    INFN-Torino, Torino, Italy
  • F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4 % (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the main issues regarding the thermo-mechanical 3D details of the DTL are addressed and a Computational Fluid Dynamics (CFD) model is proposed and validated against the experimental data. The results of these simulations are used to properly design the DTL cooling system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA047 Developing an Yb/Nd Doped Hybrid Solid Laser of RF Gun for SuperKEKB Phase II Commissioning 4540
 
  • X. Zhou, T. Natsui, Y. Ogawa, M. Yoshida, R. Zhang
    KEK, Ibaraki, Japan
 
  The electron beams with a charge of several nC and a normalized emittance of less than 10 'm are expected to be generated in the photocathode RF gun for injector linac of SuperKEKB accelerator project. By development of the Yb-doped laser system, more than 1.0 nC electron has been obtained in 25 Hz. The laser system is already for commissioning phase I. But, the 30 ps pulse width stretch limit the pulse energy of the amplifier laser system. As well-established laser material, Nd:YAG rods with high optical homogeneity and high damage threshold, simplify the design of high-pulse-energy amplifier. Therefore, a new Nd/Yb hybrid laser system is development to increase the pulse energy of the laser source. For phase II commissioning, more than 3 nC electron beam is expected. Also, a chirped pulse amplification (CPA) laser system is prepared for the phase III commissioning, both pulse energy and pulse shaping controller are expected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA048 Design and Progress on Mechanical & Alignment System for HEPS-TF 4544
 
  • C. H. Li, S.J. Li, J. Liu, H. Wang, X.L. Wang, Z. Wangpresenter, L. Wu
    IHEP, Beijing, People's Republic of China
 
  HEPS is a new generation synchrotron facility with a stringent requirement of very low emmittance. The key technology difficulties are supposed be overcome during the HEPS-TF stage. There are two projects in progress for mechanical and alignment system. One is the development of precision auto-tuning magnet girder, to meet the requirement of beam based alignment in tunnel, the other is the study on vibrating-wire alignment technique to improve alignment accuracy of magnets on a girder. This paper will describe the design and progress of both projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA049 Introduction About Key Techniques of Critical Equipment in CSNS 4548
 
  • L. Kang, H.Y. He, L. Liu, X.J. Nie, A.X. Wang, G.Y. Wang, J.B. Yu, J.S. Zhang, D.H. Zhu
    IHEP, Beijing, People's Republic of China
  • J.X. Chen, C.J. Ning, Y.J. Yu
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: National Natural Science Foundation of China (Grant Nos.11375217)
The China Spallation Neutron Source (CSNS) is the complex consists of a negative hydrogen linear accelerator, a rapid cycling proton synchrotron (RCS) accelerating the beam to 1.6 GeV energy, a solid target station, and instruments for spallation neutron applications. Some equipment which work in high radiation zone, such as beam dumps, collimators, proton beam window and so on, should contain the performance of long lifetime, high vacuum, and remote maintenance easily. This paper mainly introduce some key techniques in these equipment, firstly quick-release remote clamp and remote maintenance tool in collimators and proton beam window will be introduced, then some key brazing techniques in processing of these equipment will also be mentioned. Vibration online monitoring system and other key techniques will be showed finally.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA050 Latest Progress of Magnet Girder Prototypes for HEPS-TF 4551
 
  • H. Wang, C. H. Li, S.J. Li, H. Qu, Z. Wangpresenter, L. Wu
    IHEP, Beijing, People's Republic of China
 
  The magnet girder technology is one of the key tech-nologies which should be overcome in the stage of HEPS-TF (Test Facility of High Energy Photon Source). The girder should be beam-based aligned, and must has high adjusting precision and high stability as well. For these issues, two girder systems are designed and developed. This paper will describe the latest progress of the girder prototypes, including structure design updates, control system progress, and processing and assembling of Girder I prototype.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA051 Vibration Study of Magnet Girder of the HEPS-TF 4554
SUSPSIK114   use link to see paper's listing under its alternate paper code  
 
  • Z. Wang, C. H. Li, H. Qu, H. Wang
    IHEP, Beijing, People's Republic of China
 
  Abstract: There are stringent requirements on beam stability in the High Energy Photon Source (HEPS). The stability of the magnet girder is an extremely important factor for the beam stability. This paper will discuss the influence of ground vibration to the beam stability. This influence will determine the scope of the vibration magnification of the magnet girder. By improving the stiffness of the magnet girder, the influence will be reduced and the beam stability shall be improved. Besides, the progress of the HEPS-TF girder prototype and the vibration test will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA052 Preliminary Design of Magnet Support System for CEPC 4557
 
  • H. Wang, H. Qu, J.L. Wang, Z. Wangpresenter, N. Zhou
    IHEP, Beijing, People's Republic of China
 
  Magnet support system is important for CEPC. For the 100 km design of CEPC, there will be thousands of mag-nets and their supports in both collider and booster. Espe-cially, the booster ring is above the collider in the space, the magnets are hung by the supports. The goals of mag-net supports are simple and flexible structure, minimizing the magnet deformation, good stability, low cost and so on. This paper will describe the preliminary design of magnet support system, the optimization to minimize the magnet deformation and the topology optimization of the frame structure in booster.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA053 Design of the Girder Control System for HEPS-TF 4560
 
  • S.J. Li, C. H. Li, J. Liu, H. Wang, Z. Wangpresenter
    IHEP, Beijing, People's Republic of China
 
  To make the alignment become easier, the HEPS-TF (High Energy Photon Source-Test Facility) magnet girder, which is different from the conventional one, is designed to achieve the goal of adjusting the girder's position and orientation online. The control system is one of the key sub-part. This Paper will describe the control system design, especially on the hardware configuration, software programming as well as user interface design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA054 Research of the Chinese Spallation Neutron Source Stripper Foil 4562
 
  • J.X. Chen
    CSNS, Guangdong Province, People's Republic of China
  • L. Kang, J.B. Yupresenter
    IHEP, Beijing, People's Republic of China
 
  Funding: This research was financially supported by the National Natural Science Foundation of China No.11375217.
In the injection process of spallation neutron source, the effect of the stripper foil is extremely critical, which is the key equipment to realize the conversion of negative hydrogen ions into proton injection. This paper mainly introduces the research of Chinese Spallation Neutron Source (CSNS) stripper foil. The CSNS stripper foil is a diamond-like carbon (DLC) foil with a thickness of 100 micrograms per square centimetre. This paper introduces the study of the thickness of the CSNS stripper foil, the installation method and the installation process in the tunnel site. Simultaneously, the influence of the gas flow rate of the vacuum chamber on the vibration of the foils is simulated. In the end of this paper, the research plan and follow-up of the experimental equipment of the stripper foil are introduced.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA055 The Preliminary Performance of the Timing and Synchronization System at Tsinghua University 4565
SUSPSIK113   use link to see paper's listing under its alternate paper code  
 
  • Z.Y. Lin, Y.-C. Du, W.-H. Huang, W.-H. Huang, C.-X. Tang, C.-X. Tang, J. Yang
    TUB, Beijing, People's Republic of China
  • J.M. Byrd, L.R. Doolittle, G. Huang, Q. Qiang, R.B. Wilcox, Y.L. Xu
    LBNL, Berkeley, California, USA
 
  A precise timing and synchronization system is developed in Tsinghua University(THU). The whole system scheme includes fiber-based CW carrier phase reference distribution system (PRDS) for delivering stabilized RF phase reference to multiple receiver clients, Low Level RF (LLRF) control system to stabilized the accelerating mi-crowave field and laser-RF synchronization system for high precise synchronization of optical and RF signals. The system test and the demonstration experiment of each subsystem are carried on to evaluate the system and the phase error jitter resources are analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA056 Study of Influence of Dipole and Quadrupole Power Ripple on Slow Extraction for XiPAF 4569
 
  • Q. Zhang, G.R. Li, Z.Y. Linpresenter, X.W. Wang, H.J. Yao, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • X. Guan
    Tsinghua University, Beijing, People's Republic of China
 
  The 3rd resonant slow extraction and RF-Knockout technology has been adopted for XiPAF, which was designed for proton therapy and single event effects. The separatrix of stable region will fluctuate in the process of slow extraction due to power ripple, hence influence the uniform of extracted beam and the extraction efficiency. The influence of dipole and quadrupole power ripple is studied in theory and simulated by a MPI parallel multi-particle program, a method of making beam less sensitive to power ripple is discussed and verified by simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA057 The Primary Control Network of HLS II 4573
 
  • W. Wang, L. Lin, F.F. Wu, Q. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  To meet the accuracy requirement of alignment and installation of HLS', the high accuracy control network is necessary. The high accuracy primary control network will provides reliable reference to the local control network. After optimization design that using Monte-Carlo method, according to the structure characteristic of HLS', the primary control network is measured by several different instruments, such as: Laser tracker, Total station and plummet. The accuracy of actual primary control network meets the design requirements, it provides strong foundation for subsequent project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA059 Development of a New High Power RF Window for S-band Linac 4576
 
  • W.H. Hwang, J.Y. Choi, Y.D. Joo, S.H. Kim, B.-J. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
  • S.J. Roh
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
 
  A prototype rf window was developed in collaboration with Pohang Accelerator Laboratory (PAL) and domestic companies. The PAL designed the S-band TE012 rf window and conducted the high power performance tests of single rf window to verify the operation characteristics for the application to the PLSII Linac. The test was performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and rf analyzing equipment. As the test results with SLED, no breakdown appeared up to 75 MW peak power with 4.5 micro-seconds rf pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLSII Linac confirms that the rf window well satisfies the criteria of PLS Linac operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA060 Technical Overview of Inter-Undulator Support System for PAL XFEL 4579
 
  • H.-G. Lee, S.-H. Jeong, Y.G. Jung, H.-S. Kang, D.E. Kim, S.B. Lee, B.G. Oh, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Pohang Accelerator Laboratory (PAL) has been developing a SASE X-ray Free Electron Laser based on 10 GeV linear accelerator. The inter-Undulator (IU) support system was developed to be used in the intersections of the Undulator Systems. The IU supports consist of phase shifter, quadrupole magnet with mover, beam loss monitor, cavity BPM with mover, two corrector magnets and vacuum components. The adjusting mechanism of IU Support has manual alignment system to be easily adjusting the component. The mover of quadruple magnet and cavity BPM with submicron repeatability has auto-adjusting systems with stepping motor. The mover main specifications include compact dimensions and a ±1.5 mm stroke in the vertical and horizontal direction. Linear motion guide based on 5-phase stepping motors have been chosen. This paper describes the design of the stages used for precise movement and results of mechanical measurements including reproducibility will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA061 Study of the Cooling and Vacuum Systems of a Miniature 12 MeV Race-Track Microtron 4582
 
  • Yu.A. Kubyshin, X. Escaler, A. Viladomiu
    UPC, Barcelona, Spain
  • V.I. Shvedunov
    SINP MSU, Moscow, Russia
 
  With the aim of optimization, numerical simulations of the cooling and vacuum systems of a compact 12 MeV race-track microtron (RTM) which is under construction at the Technical University of Catalonia have been carried out. The hydraulic and thermal performance of the cooling system for various flow rates has been studied using the Computational Fluid Dynamics (CFD) software. A CFD model, previously validated with experimental pressure loss results, has permitted to simulate the cooling fluid temperature, inner wall temperatures and heat trans-fer coefficients at different sections of the RTM accelerating structure. Conclusions concerning the current design and its possible optimization are discussed. Simulations of the RTM high vacuum conditions have been performed using the Monte-Carlo simulation package Molflow+. The pressure in the vacuum chamber, pumping tube conductance and maximum allowed throughput have been calculated. Also results of the vacuum chamber pumping out sessions are reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA062 Fabrication and Tests of a RF Cavity for a Novel Compact Superconducting Cyclotron for Radioisotope Production 4585
 
  • D. Gavela, J. Calero, L. García-Tabarés, P. Gómez, D. López, D. Obradors-Campos, C. Oliverpresenter, J.M. Pérez Morales, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • B. Bravo, R. Fos, J.R. Ocampo, F. Pérez, A. Salom, P. Solans
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: Work partially funded by CDTI and supported by the Spanish Ministry of Economy and Competitiveness, under project AMIT, within the subprogram CEN-20101014
The AMIT cyclotron will be a 8.5 MeV, 10 microAmp, CW, H accelerator for radioisotope production, including a superconducting, weak focusing, 4 T magnet, allowing for a low extraction radius and a compact design. The cavity is a 60 MHz, quarter wave resonator powered by a modular 8 kW solid state amplifier. The design of the cavity dealed with challenging requirements: high electric fields required by a high voltage (60 kV) on a small gap, a small aperture of the magnet leading to high capacitances and thermal losses and a requirement for a low overall size of the cavity. The fabrication process included high precision machining, soft soldering, laser welding and careful metrologies, which are described together with other technical and practical aspects. The low power tests showed a good agreement with the simulations. The conditioning of the cavity was performed with a 1.1 T magnetic field applied on the central region. It was successfully finished regarding to maximum voltage reached, power losses and temperatures. The cavity was also tested at high power with a constant hydrogen flow injected in the central region (as expected in the cyclotron) with success.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA064 Timing System at ESS 4588
 
  • J. Cereijo García, T. Korhonen, J.H. Lee, D.P. Piso
    ESS, Lund, Sweden
  • R.R. Osorio
    UDC, A Coruña, Spain
 
  The European Spallation Source (ESS) is a research facility being built in Lund (Sweden) that will produce neutrons by the spallation process. It uses the Micro-Research Finland (MRF) Timing System, which provides a complete event-based timing distribution system. The timing signal generation consists of a basic topology: an Event Generator (EVG), an optical distribution layer (fan-out modules) and an array of Event Receivers (EVRs). The timing system will provide clock synchronization and timing services to devices with real time requirements. Its main purposes are event generation and distribution, time stamping and synchronous data transmission. The event clock frequency will be 88.0525 MHz, divided down from the bunch frequency of 352.21 MHz. An integer number of ticks of this clock will define the beam macropulse full length, around 2.86 ms, with a repetition rate of 14 Hz. ESS will be the first facility to deploy large amounts of uTCA EVRs, and is planning to take advantage of the features provided by the uTCA standard, like trigger and clock distribution over the backplane. These EVRs are already being deployed in some systems and test stands.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA065 Working Concept of 12.5 kW Tuning Dump at ESS 4591
 
  • Y. Lee, M. Eshraqi, S. Ghatnekar Nilsson, Y.I. Levinsen, R. Miyamoto, S. Molloy, M. Möller, A. Olsson, T.J. Shea, C.A. Thomas, M. Wilborgsson
    ESS, Lund, Sweden
  • F. Sordo
    ESS Bilbao, Zamudio, Spain
 
  The linac system at the European Spallation Source (ESS) will deliver 2~GeV protons at 5~MW beam power. The accelerated protons from the linac will be transported to the rotating tungsten target by two bending magnets. A tuning beam dump will be provided at the end of the linac, downstream of the first bending magnet. This tuning dump shall be able to handle at least 12.5 kW of beam power. In this paper, we present the working concept of the tuning dump. The impact of the proton beam induced material damage on the operational loads and service lifetime of the tuning dump is analysed. A number of particle transport and finite-element simulations are performed for the tuning beam modes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA066 TPS LINAC Temperature Monitoring System 4595
 
  • C.L. Chen, H.-P. Chang, C.-S. Fann, K.-K. Lin, K.L. Tsai
    NSRRC, Hsinchu, Taiwan
 
  TPS Linac has been providing with electron beams which conform to the specifications to the requirement since 2014. Firstly electrons are extracted from electron gun (e-gun), and they are accelerated and gained energy from 90 keV to 150 MeV in three linear accelerating sections. Then electron beams are successfully injected to the booster ring via Linac to Booster (LTB) transport line. Providing a stable and reliable operating system is next priority objective and so a temperature monitoring system is established. This temperature monitoring system is used to monitor the temperatures for each Linac sub-system and its surrounding environment. By using this temperature monitoring system, it helps to understand the relation between beam energy and working temperature for each sub-system, when Linac is under normal operation. This report will detail the temperature monitoring components, including thermalcouples, PLC thermal modules, PLC programming and graphic user interface (GUI). By integrating with EPICS, this monitoring system is becoming a complete solution for ensuring any possible influence due to thermal effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA067 Observation of Beam Disturbance Caused by ID Gap Variation at TLS Storage Ring 4598
 
  • H.C. Chen, C.L. Chenpresenter, H.H. Chen, C.H. Kuo, Y.K. Lin
    NSRRC, Hsinchu, Taiwan
 
  Insertion device is controlled by user for specific experimental condition on user beam time. It operates with user defined gap and phase. Three different undulators are installed in TLS (Taiwan Light Source), including one elliptically polarized undulator. Interactions between these undulators were studied to demonstrate the impact on beam performance. How to get more stable beam under undulators' interaction is discussed in this study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA068 General Design of ID Front Ends in the TPS 4601
 
  • C.K. Kuan, C.K. Chan, Y.T. Cheng, J. -Y. Chuang, Y.M. Hsiao, I.C. Sheng, C. Shueh, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source is a 3 GeV, 3rd generation synchrotron radiation source at the NSRRC. Phase-I commissioning includes seven Insertion Device (ID) Front Ends which are built to transmit intense synchro-tron radiation generated by In-vacuum Undulators and Elliptically Polarizing Undulators in the storage ring to the Photon Beamline. The total power and power distri-bution on Front End components is calculated and ana-lysed and Finite Element Analysis is used to verify the thermal performance under high heat loads while Monte-Carlo methods are utilized to simulate the vacuum pres-sure distribution. All apertures of the components are the same to simplify and standardize the design of the Front Ends. This paper describes main design considerations, especially the high heat load and vacuum pressure distri-bution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA069 NSC KIPT Experience in Use of Laser Tracker Leica at 401 in Equipment Alignment of 100 MeV/100 KW Electron Linear Accelerator of Neutron Source Driver 4604
 
  • M. Moisieienko, O. Bezditko, I.M. Karnaukhov, A. Mytsykov, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  For successful operation of electron linear accelerator that is driver of NSC KIPT Neutron source it is necessary that all the acceleration sections and all the electromagnetic elements should be installed in design position according to the designed lattice. Accuracies of all electromagnetic elements installation are 150 mkm in transverse positions and 200 mrad for all three rotation directions. The whole process, fiducialization and developing of coordinate net, is controlled by Laser tracker Leica AT 401. Well-planned methods allow to realize uniform irradiation of neutron-generation target.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA070 Cooling and Thermo Stabilization System of 100MeV/100kW Electron Linear Accelerator of Neutron Source Driver 4607
SUSPSIK115   use link to see paper's listing under its alternate paper code  
 
  • M. Moisieienko, I.M. Karnaukhov, A. Mytsykov, A.Y. Zelinsky
    NSC/KIPT, Kharkov, Ukraine
 
  Cooling system and temperature control technology elements of the linear electron accelerator of 100 MeV/100kW is a complex technological system composed of three subsystems: the cooling klystron gallery equipment (30 C ± 1), cooling of the accelerator tunnel equipment (30 C ± 1) and the cooling and temperature control accelerating sections and waveguide (40 ° C ± 0,2). The block diagram of cooling and temperature control of the linear electron accelerator of 100 MeV/100 kW, describes the basic principles to formulate requirements to the cooling systems. It describes the status of the installation, commissioning and testing of the cooling and temperature control of the accelerator - driver subcritical neutron source KIPT.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA071 A Method to Design Multi-Cell Accelerator Cavities 4610
 
  • S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  An efficient method for designing multi-cell accelerator cavities has been developed. It is similar to the approach used by Superfish codes for drift-tube linacs (DTL), where a few single cells at representative beam velocities are tuned in 2D and their geometrical parameters are interpolated to cover the required beam-velocity range. The method is implemented using 3D electromagnetic (EM) modeling with CST MicroWave Studio, which allows its application for various types of resonators, e.g., for H-mode cavities. Interpolating results of 3D EM design of tuned representative single-cell cavities leads to a 3D multi-cell cavity model that can be finalized with just a few small adjustments. As a challenging application example, we design multi-cell resonators of three types - cross-bar (CH) and inter-digital (IH) H-mode, as well as DTL - for accelerating muons in the velocity range of v/c = 0.08-0.3, and compare their performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA072 Travelling Laser Focus System for the Particles Acceleration 4613
 
  • A.A. Mikhailichenko
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We describe the result of the wake-fields calculation in a device for acceleration of particles in the micro-structures illuminated by the swept laser bust. Calculations carried with help of FlexPDE code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA073 Latest Results on Fast Kicker for g-2 E-989 Experiment at Fermilab 4616
 
  • A.A. Mikhailichenko, D. L. Rubin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We are describing the latest results on fabrication and measurements of kicker and pulser and beam dynamics in E-989 experiment at FERMILAB on precise measurement of anomalous magnetic moment of muon.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA074 Upgrade Study of the MedAustron Ion Beam Center 4619
 
  • A. De Franco, T.T. Böhlen, F. Farinon, G. Kowarik, M. Kronberger, C. Kurfürst, S. Nowak, F. Osmić, M.T.F. Pivi, C. Schmitzer, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk'odowska-Curie grant agreement No 675265.
MedAustron is a synchrotron-based ion beam therapy center allowing the treatment of tumours with protons and other light ion species, in particular C6+. Commissioning of the first irradiation room for clinical therapy with proton beams has been completed and in parallel to the commissioning of the remaining two irradiation rooms, a facility upgrade study has started. Our analysis includes considerations for the possibility to introduce different extraction mechanisms, new diagnostic tools, optimization of the accelerator cycle time, ripples mitigation for more accurate active beam stabilization and other improvements for hardware reliability. We present the concept, the main benefits, also in terms of treatment time reduction, and the challenges for implementation. Each option will be investigated including a detailed assessment on resources demand, impact and risk analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA075 Beam Measurements in the MedAustron Synchrotron With Slow Extraction and Off-Momentum Operation 4623
 
  • C. Kurfürst, A. De Franco, F. Farinon, M. Kronberger, S. Myalski, S. Nowak, F. Osmić, M.T.F. Pivi, C. Schmitzer, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • A. Garonna
    TERA, Novara, Italy
  • T.K.D. Kulenkampff
    CERN, Geneva, Switzerland
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The MedAustron Ion Therapy Center is a medical accelerator facility for hadron therapy cancer treatment using protons and carbon ions. The facility features 4 irradiation rooms, three of which are dedicated to clinical operation and a fourth one dedicated to non-clinical research. The latter was handed over to researchers in autumn 2016. A 7 MeV/n injector feeds a 77 m circumference synchrotron which provides beams for treatment and research. Routine verification measurements in the synchrotron involve beam emittance, dispersion as well as tunes and chromaticity. The horizontal and vertical emittance are measured using scraping plates and a direct current transformer. The dispersion function in the ring is determined by sweeping the synchrotron RF frequency while measuring the beam position in the shoe-box pick-ups. The horizontal and vertical betatron tune and chromaticity are measured with Direct Diode Detection electronics, developed at CERN, while changing the beam position with the RF radial loop. The beam is kept off-momentum, thus in dispersive regions the closed orbit is largely offset from the central orbit. Methods for beam measurements in the synchrotron are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA076 Overview and Status of the MedAustron Ion Therapy Center Accelerator 4627
 
  • M.T.F. Pivi, A. De Franco, F. Farinon, M. Kronberger, C. Kurfürst, S. Myalski, S. Nowak, F. Osmić, C. Schmitzer, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • T.K.D. Kulenkampff
    CERN, Geneva, Switzerland
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The synchrotron-based MedAustron accelerator in Wiener Neustadt, Austria, has seen the first clinical beam and has been certified as a medical accelerator in December 2016. This represented a major milestone for the facility whose original design originated more than a decade ago and construction started four years ago. The accelerator is designed to deliver clinical proton beams 60-253 MeV and carbon ions 120-400 MeV/u to three ion therapy irradiation rooms (IRs), including a room with a proton Gantry. Beams up to 800 MeV will be provided to a fourth room dedicated to non-clinical research. Presently, proton beams are delivered to the horizontal beam lines of three irradiation rooms. In parallel, commissioning of the accelerator with Carbon ions and the installation of the Gantry beam line are ongoing. At MedAustron, a third-order resonance extraction method is used to extract particles from the synchrotron in a slow controlled process over a spill time of 0.1-10 seconds to facilitate the measurement and control of the delivered radiation dose during clinical treatments. The main characteristics of the accelerator and the results obtained during the commissioning are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA077 Turn-Key Beamlines for the 15 - 30 MeV Medical Cyclotron at VECC 4631
 
  • C. Glarbo, M. Budde, F. Bødker, P.M. Hansen, M.N. Pedersen
    Danfysik A/S, Taastrup, Denmark
 
  Turn-key beamlines built by Danfysik are to be installed in 2017 at the medical cyclotron facility VECC in Kolkata, India. The beamlines will transport a 500 μA beam of 15 - 30 MeV protons to the target stations where they're used for the production of radioisotopes/radio-pharmaceuticals, and in research and development. A raster scanning system is used to generate an even dose distribution in a square or circular pattern. The beamline components, collimators, diagnostics, and helium cooled HAVAR separation foils protecting the beamlines and cyclotron from possible contamination from the targets are designed for the up to 15 kW beam power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA078 The Beam Quality Assurance of the MedAustron Particle Therapy Accelerator 4634
 
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
  • A. De Franco, F. Farinon, M. Kronberger, C. Kurfürst, S. Myalski, S. Nowak, F. Osmić, M.T.F. Pivi, C. Schmitzer, P. Urschütz, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • T.K.D. Kulenkampff
    CERN, Geneva, Switzerland
 
  The delivery of clinical beams for patient treatment at the MedAustron Ion Therapy Center requires extensive accelerator performance verifications, which are performed in several steps. In first instance, the key parameters of the beam delivered to the irradiation rooms (beam position, spot size, energy and intensity) are verified via measurements performed with beam diagnostic devices distributed along the accelerator. The second verification step consists in testing the full functionality of the therapy accelerator, including the medical frontend: scanning magnets performance, intensity monitoring and safety features. The final verification step is the quality assurance (QA) done by the medical department. An extended set of reference measurements assures the fast identification of the faulty components in case of a performance deviation, and the totality of the accumulated data allows in-depth analysis of the accelerator performance. We present here the trends and correlations observed during the first verification step for the most important parameters, as well as the lessons learned through all the implementation stages of the beam quality assurance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA079 First Optics Design and Beam Performance Simulation of PRAE: Platform for Research and Applications With Electrons at Orsay 4637
 
  • A. Faus-Golfe, S. Barsuk, B. Borgo, D. Douillet, M. El Khaldi, L. Garolfi, A. Gonnin, M. Langlet, P. Lepercq, M. Omeich, V. Puill, C. Vallerand
    LAL, Orsay, France
  • P. Ausset, M. Ben Abdillah, S. Blivet, P. Duchesne, B. Genolini, M. Hoballah, G. Hull, R. Kunne, C. Le Galliard, J. Lesrel, D. Marchand, E. J-M. Voutier
    IPN, Orsay, France
  • A. Hrybok, A. Pastushenko
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev, Ukraine
  • A. Vnuchenko
    IFIC, Valencia, Spain
 
  The PRAE project aims at creating a multidisciplinary R&D facility in the Orsay campus gathering various scientific communities involved in radiobiology, subatomic physics, instrumentation and particle accelerators around an electron accelerator delivering a high-performance beam with energy up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and future challenging R&D. In addition PRAE will provide a major education and training asset for students and engineers yielding a regional instrument of advanced technology at the heart of the scientific, technological and academic complex of the Paris-Saclay University. In this paper we report the first optics design and performance evaluations of such a multidisciplinary machine, including a first description of future experiments and the required beam instrumentation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA081 Radiation Tests of Aerospace Components at ELBE 4641
 
  • Ch. Schneider, D. Bemmerer, P. Michel, D. Stach
    HZDR, Dresden, Germany
 
  The cw electron accelerator ELBE operates mainly in the beam energy range 6 to 32 MeV and beam current range 1μA to 1mA. For most experiments a thermionic gun is used as electron source. The cw electron pulse structure so as the pulse charge is realized by applying electrical pulses with specific amplitudes and frequencies on the grid of the gun. The standard cw operation frequency is 13 MHz but can be divided sequentially by the factor 2 down to 101 kHz. For very special pulse structures a so called single pulser module exist performing different patterns also with dark current suppression via a macro pulser gate. For evaluating the performance and hardness under irradiation of e.g. aerospace components much lower doses respectively currents lower than the μA range are required. Furthermore reproducible and stable doses in a specific area for consecutively radiation of samples are necessary. In the presentation the investigations and concepts used at ELBE for the irradiation of different aerospace components are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA082 Multi-Energy Trial Operation of the HIT Medical Synchrotron: Accelerator Model and Data Supply 4644
 
  • M. Galonska, E. Feldmeier, Th. Haberer, A. Peters, C. Schömers
    HIT, Heidelberg, Germany
 
  At the Heidelberg ion beam therapy center (HIT) cancer patients are treated with the raster-scanning dose delivery method of heavy ion pencil beams. The beams are provided by a synchrotron which allows for a variation of the ion penetration depth by changing the ion beam energy for each synchrotron cycle. In order to change the beam energy within one synchrotron cycle the accelerator model and data supply model within the control system have been extended extensively. In this first data supply model beam re-acceleration or deceleration between two arbitrary extraction energies is defined. The model defines an additional transition phase, i.e. current/set value patterns between extraction and the re-acceleration yet giving the possibility of setting the beam properties suitable for further acceleration/deceleration. This includes the dipoles, correctors, quadrupoles, sextupoles, KO-Exciter (spill break), and RF. This allowed for the survey and optimisation of the beam properties including possible beam losses of the re-accelerated, transversally blown up beam for arbitrary energy levels.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA083 First Tests of a Re-accelerated Beam at Heidelberg Ion-Beam Therapy Centre (HIT) 4647
 
  • C. Schömers, E. Feldmeier, M. Galonska, Th. Haberer, J.T. Horn, A. Peters
    HIT, Heidelberg, Germany
 
  In the active raster scanning method performed at HIT since 2009, tumors are irradiated slice-by-slice by changing the extraction energy. The synchrotron provides a library of 255 different extraction-energy levels per ion type, according to the aimed penetration depth. So far, a new synchrotron cycle is started for each iso-energy-slice resulting in a non-optimal duty cycle. In order to reduce treatment time and to increase the number of patients treated per day, synchrotron cycles with several extraction flattops on different energy levels are planned. After completing one iso-energy-slice, remaining particles will be reaccelerated to the adjacent level. As a first test a new data supply model generating patterns for power supplies and RF devices with two different extraction flattops has been implemented recently. The properties of the reaccelerated beam are now under detailed examination. The reaccelerated beam was successfully extracted and guided to the experimental area. Ionization chambers along the beam line clearly show two spills on two different extraction flattops. The desired change of beam energy has been verified by range measurements in a water column.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA084 Evaluation of Collective Effects in Iranian Light Source Facility (ILSF) Storage Ring 4650
 
  • E. Ahmadi, S. Ahmadiannaminpresenter, J. Rahighi
    ILSF, Tehran, Iran
  • S.M. Jazayeri
    IUST, Narmac, Tehran, Iran
 
  In this paper, we present the calculations of various collective effects in the storage ring of ILSF, a synchrotron light source under design in Iran. The ILSF storage ring is based on 5-BA lattice structure and emittance of 270 pm-rad which is optimized to provide high brightness and flux photons for the users. Because of design features, small radius vacuum pipe and small momentum compaction factor of lattice, it is expected that instabilities emerging from collective effects will affect significantly the beam quality and make it is challenging to reach maximum designed beam current. We will address the results of beam quality degradation and threshold calculations for different singlebunch and multibunch instabilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA085 Design and Construction of 126 MHz Capacity Loaded Aluminium Cavity Prototype 4653
SUSPSIK092   use link to see paper's listing under its alternate paper code  
 
  • S. Ahmadiannamin, J. Rahighi, Kh.S. Sarhadi
    ILSF, Tehran, Iran
  • F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • M. Lamehi Rashti
    IPM, Tehran, Iran
 
  Iranian light source Facility (ILSF)isa 3 GeV Ultra low emittance synchrotron with 528 meter circumference that will be constructed in the city of Qazvin, located 150km west of Tehran. Motivated by the development of HOM damped cavity with simpler structure at 100 MHz at MAX Lab and also lower costs, 100 MHz RF system is envisaged for ILSF booster and storage ring. An RF cavity prototype was fabricated for better understandingof characteristics of capacity loaded RF cavities by practical investigation. In this paper, design and development of this prototype is presentedwith the simulation and measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA086 Beam Dynamics Studies of an Accelerating Tube for 6 MeV Electron LINAC 4657
 
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
  • F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannaminpresenter
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • M. Lamehi
    IPM, Tehran, Iran
 
  Side coupled standing wave accelerating tubes are widely used in a low energy linear accelerator because of relatively high accelerating gradient and low sensitivity to construction tolerances. The effective interaction of particles and electromagnetic fields is important for accelerate electrons to intended energy with the greatest efficiency and beam quality output. In this paper, we present the beam dynamics of a 6 MeV Side coupled standing wave accelerating tube using a space charge tracking algorithm (ASTRA). The designed accelerating tube that feeds by a maximum power of 2.6 MW resonant at frequency of 2998.5 MHz in pi/2 mode. 37.5 percent capture efficiency, 6.82 pi-mm-mrad horizontal emittance, 6.78 pi-mm-mrad vertical emittance, 2.24 mm horizontal and vertical beam size and 1079 keV energy spread of the output beam have been determined from the results of beam dynamics studies in ASTRA  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA087 Thermal and Mechanical Analysis of 3 GHz Side Coupled RF Cavity for Medical Linacs 4660
 
  • M. Mohseni Kejani, F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • S. Ahmadiannaminpresenter
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  Medical linear accelerators have wide applications for cancer treatment in the world. Side coupled RF cavities was used in this accelerators for production of X-ray in range of energies between 4 to 25 MeV. Usually, the RF source is magnetron with lower cost in comparison to klystron in this type of applications. Side coupled cavity is a biperiodic structure with sensitive performance to operational thermal and mechanical conditions. In this paper, thermal and mechanical simulations for a period of the structure are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA088 DESIGN AND CONSTRUCTION OF BRAZED SIDE COUPLED CAVITY OF MEDICAL ACCELERATOR 4664
 
  • S. Ahmadiannamin, Kh.S. Sarhadi
    ILSF, Tehran, Iran
  • F. Abbasi, M. Mohseni Kejani
    Shahid Beheshti University, Tehran, Iran
  • M. Bahrami, M. Lamehi
    IPM, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • S. Zarei
    Nuclear Science and Technology Research, InstituteRadiation Application School, Tehran, Iran
 
  Two types of standing wave RF cavities are used routinely in construction of medical linear accelerators. These two types are Side coupled and on-axis coupled standing wave cavities. This selection is based on higher shunt impedance and compactness in comparison to travelling wave RF cavities. In this paper, we present the simulation, construction and measurement results of brazed section of 3 GHz side coupled RF cavity. It is the first successful experience of its kind in Iran. The obtained experiences can be used effectively for construction of side coupled thermionic RF guns and RF cavities of medical or industrial linacs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA089 Optimization Study on Production of Mo-99 Using High Power Electron Accelerator Linac 4667
 
  • A. Taghibi Khotbeh-Sara, F. Rahmani
    KNTU, Tehran, Iran
  • S. Ahmadiannaminpresenter
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  Molybdenum-99 is used for preparing 99mTc, which is the most widely used isotope in nuclear medicine. As a recent and now shortages in reactor-based supplies of 99Mo/99mTc and also some problems due to the time limitation in a direct production approach such as 100Mo(p, 2n)99mTc reaction by cyclotrons, many of developed countries have started the plan to produce this type of radioisotopes based on the production of non-reactor methods, especially by linac. In this study, the investigation on 99Mo production based on high power electron linac as an alternative approach has been performed, in which the use of 100Mo(gamma, n)99Mo (photoneutron production) has been proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA090 The TOP-IMPLART Linac: Machine Status and Experimental Activity 4669
 
  • C. Ronsivalle, A. Ampollini, G. Bazzano, P. Nenzipresenter, L. Picardi, V. Surrenti, E. Trinca, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Funding: Regione Lazio in the framework of the TOP-IMPLART Project
The TOP-IMPLART (Intensity Modulated Proton Therapy Linear Accelerator for Radiotherapy) linac is a 150 MeV pulsed proton linear accelerator for protontherapy applications under realization, installation and progressive commissioning at ENEA. It is the first linac running with 3GHz SCDTL (Side Coupled DTL) accelerating modules. These constitute the first two sections of the whole linac up to 71 MeV proton energy, while the accelerating structure of the following part of the accelerator is under definition. Each SCDTL section is powered by a 10 MW peak power klystron. The first section, consisting of 4 modules (7 to 35 MeV) has been completed and it is operational at low repetition rate (25 Hz). The second section, consisting of other 4 modules (up to 71 MeV), is currently under executive design. The output beam at each stage of the progressive commissioning is fully characterized. The beam is routinely employed in radiobiology experiments and detector evaluation. The paper presents the actual status of the machine, installation, beam characterization and an overview of the experimental activity results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA091 Diagnostics Methods for the Medium Energy Proton Beam Extracted by the TOP IMPLART Linear Accelerator 4673
 
  • M. Vadrucci, A. Ampollini, P. Nenzipresenter, L. Picardi, C. Ronsivalle, E. Trinca
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • E. Cisbani, F. Ghio
    ISS, Rome, Italy
  • M. Marinelli, G. Prestopino, G. Verona Rinati
    INFN - Roma Tor Vergata, Roma, Italy
  • C. Placido
    University of Rome La Sapienza, Rome, Italy
 
  Funding: This material is based upon work supported by the Regione Lazio/Italy
The Italian TOP IMPLART project aims to develop the first proton linear accelerator for cancer radiotherapy. A 150MeV proton LINAC is under construction at the ENEA Frascati research center: currently the machine is composed by a 7MeV injector operating at 425MHz and four 3GHz SCDTL modules producing a proton beam of 35MeV. Operational procedures for irradiation of samples need careful measurements of average beam current, transverse distribution and pulse charge by different monitor types placed along the beam line. The injected current in the high frequency segment of the accelerator is measured by a Fast Current Transformer (FCT) at the entrance of the SCDTL modules and the pulsed current of the accelerated beam is measured by a second FCT, placed in air, at the exit. The output proton beam shape and intensity are measured by an integral ionization chamber, a double (XY) multistrip ionization chamber, a synthetic single crystal diamond detector and a Faraday cup. In this work, the results of these multiple diagnostic tools applied to different operating conditions of the machine are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA093 Open XAL Status Report 2017 4676
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    SLAC, Menlo Park, California, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, B.T. Folsom, E. Laface, Y.I. Levinsen, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
  • J.E. Muller
    CERN, Geneva, Switzerland
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA094 Permanent Halbach Magnet Proton and Superconducting Carbon Cancer Therapy Gantries 4679
 
  • D. Trbojevic, S.J. Brooks, B. Parker, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • W. Lou
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Hadron cancer therapy facilities are expanding exponentially as advantages with respect to other radiation treatments are localized energy deposition at the tumor and reduction of side effects. The main problem of expansion is the high cost and large size of the facility. The largest cost is the delivery systems, especially isocentric gantries. We present first, the permanent Halbach gantry with significant reduction in cost and simplified operation as all treatment energies are transported from an accelerator to the patient through the same Fixed Field Alternating Gradient (FFAG) structure. The superconducting FFAG gantry also transports at one setting all energies required for the cancer treatment of the patient with carbon ions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA095 Storage Ring Injection Kickers Alignment Optimization in NSLS-II 4683
 
  • G.M. Wang, W.X. Cheng, J. Choi, T.V. Shaftan, X. Yangpresenter
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. The SR is designed to work in top-off injection mode. The injection straight includes a septum and four fast kicker magnets with independent amplitude and timing control. Ideally, fast kickers formed a local bump, which is transparent to stored beam during top off injection. Due to mismatch of kicker voltage, timing or waveform, there is residual betatron oscillation and impact normal operation. This paper will present the injection kicker waveform measurement with beam, local and global alignment optimization to in improve top off injection transition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA095  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA096 Development of 11C+ Ion Source for Reacceleration With HIMAC for Real-Time Observation of Dose Distribution 4686
 
  • A. Noda, S. Hojo, K. Katagiri, K. Noda, T. Shirai, A. Sugiura, K. Suzuki, T. Wakui
    NIRS, Chiba-shi, Japan
  • M. Grieser
    MPI-K, Heidelberg, Germany
  • M. Nakao
    RCNP, Osaka, Japan
 
  In order to improve the precision of dose distribution in a patient's body in the case of carbon therapy, realtime measurement of the dose distribution with the use of the so called OPEN PET is desirable. For realization of such a treatment, usage of isotope separator online scheme based on target fragment might be inevitable to keep the needed S/N ratio. From the above requirement, we have been developing 1+ ion source of positron emitting 11C+ ions*, which will be charge breeded before injection into the injector LINAC of the HIMAC. 11C+ ion is to be produced by a high intensity proton beam from a cyclotron. In the real process, a small cyclotron like HM20 might provide the proton beam, but at the development stage, we are planning investigation utilizing proton beam from the AVF cyclotron existing at NIRS with K-number of 110. In the present paper, the total scheme of radioactive ion re-acceleration will be described together with the recent ion source development.
* K. Katagiri et al., Review of Scientific Instruments 87, 02B509 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA097 Estimation and Measurements of Radiation Dose Distibution for the Radiation Test Area in J-PARC Main Ring 4689
 
  • M.J. Shirakata
    KEK, Ibaraki, Japan
 
  The J-PARC main ring has a beam collimator system in the first straight section for the beam halo rejection. Though it makes a high radiation area in the ring which requires a serious maintenance scheme, a high radiation dose can be applied to the tests of radiation resistible devices. The radiation dose distribution was estimated by using PHITS code, and it was confirmed by dose meas-urements using RadMon, nanoDot OSL dosimeters with continuous monitoring of beam losses. The availability of the radiation test area in the accelerator ring is reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA098 Development of a 3.95 Mev X-Band Linac-Driven X-Ray Combined Neutron Source 4692
SUSPSIK121   use link to see paper's listing under its alternate paper code  
 
  • J.M. Bereder, K. Dobashi, Y. Mitsuya, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • M. Ishida, Y. Ohshima
    PWRI, Ibaraki, Japan
  • J. Kusano
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • Y. Takahashi
    The University of Tokyo, Tokyo, Japan
  • Y. Tanaka
    The University of Tokyo, Institute of Industrial Science, Tokyo, Japan
 
  Funding: Council for Science, Technology and Innovation (CSTI), Cross-Ministrial Strategic Innovation Promo-tion Program (SIP), Japan Science and Technoogy Agency (JST)
The existing non-destructive inspection method employed for concrete structures uses high energy X-rays to detect internal flaws in concrete structures and iron reinforcing rods. In addition to this conventional method, the authors are developing an innovative inspection system that uses a mobile compact linac-driven neutron source that utilizes neutron backscattering, to measure the moisture content in concrete structures and estimate the corrosion probability distribution of iron reinforcing rods. By combining the knowledge of the moisture distribution in concrete structures with the information of its inner structure, the remaining life of concrete structures can be estimated. Further experiments will be conducted in the laboratory, and the moisture detection experiment in the real bridge is scheduled for 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA100 Future Plans of ADS Proton Drivers at Kyoto University Research Reactor Institute 4695
 
  • Y. Ishi, Y. Kuriyama, Y. Mori, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The accelerator complex using FFAG synchrotrons at Kyoto University Research Reactor Institute has been operated for the ADS experiments connecting the 100 MeV proton beam line with the research reactor facility KUCA (Kyoto University Critical Assembly) since 2009. Number of neutrons produced through the nuclear spallation process strongly depends on the beam energy of the pri- mary protons. If the beam energy is increased from 100 MeV to 400 MeV, the number of neutrons corresponding to single primary proton is increased by a factor of 20. Therefore, the energy upgrade of the accelerator facility is desired by the reactor physicists. A new 400 MeV FFAG synchrotron has been designed. The results of the feasibility study of the 400 MeV ring will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA101 Scanning Irradiation System at SAGA-HIMAT 4698
 
  • M. Kanazawa, M. Endo, T. Himukai, M. Kitamura, M. Mizota, A. Nakagawara, H. Sato, Y. Shioyama, T. Totoki, Y. Tsunashima
    SAGA HIMAT, Saga, Japan
 
  In SAGA-HIMAT, 620 patients have been treated by use of two irradiation rooms in 2015 financial year, where passive irradiation method is adopted. To increase treatment capacity of our facility, we have started the construction of the third treatment room at the beginning of 2014 with a scanning irradiation system. In the new treatment room (room C), there are horizontal and vertical irradiation courses. This construction was required to carry out without interruptions on the treatments in room A and room B. At the end of 2016 financial year, the system tests are almost scheduled to be ready for treatment. In this presentation, we will give obtained performances of our scanning system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA102 Structural Analysis and Evaluation of Actual PC Bridge Using 950 keV/3.95 MeV X-Band Linacs 4701
SUSPSIK029   use link to see paper's listing under its alternate paper code  
 
  • H. Takeuchi, R. Yano
    The University of Tokyo, Tokyo, Japan
  • K. Dobashi, Y. Mitsuya, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • M. Ishida, Y. Ohshima
    PWRI, Ibaraki, Japan
  • J. Kusano
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • I. Ozawa
    The University of Tokyo, The School of Engineering, Tokyo, Japan
 
  Funding: This work was supported by Council for Science, Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP) (Funding agency: JST).
In Japan, bridges constructed in the highly economic growth era are facing to aging problem and advanced maintenance methods have been strongly required recently. To meet this demand, we develop the on-site inspection system using 950 keV/3.95 MeV X-band (9.3 GHz) linac X-ray sources*. These systems can visualize in seconds the inner states of bridge, including cracks of concrete, location and state of tendons (wires) and other imperfections. We focused on the inspection for wires which are critical to the safety of bridge. At the on-site inspections, the X-ray inspection system exhibited sufficient accuracy to detect the wire's corrosion. We also evaluated the maximum thickness of concrete to which our system can be applied. Using the 950 keV system, we conducted on-site inspection for real bridges and performed structural analysis to evaluate the bearing capacity of the bridge using finite element method. We plan to apply the 3.95 MeV linac for actual bridge inspection to extend the applicable range in 2017. For accurate visualization, the parallel motion CT technique for bridge inspection is in progress.
* Mitsuru Ueaska et al, On-site nondestructive inspection by upgraded portable 950keV/3.95MeV X-band linac x-ray sources, J. Phys. B: At. Mol. Opt. Phys. 47(2014) 234008 (9pp)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA103 Design of Injector for Carbon Cancer Therapy 4704
 
  • A. Yamaguchi, K. Nakayama, K. Okaya, K. Sato, T. Takeuchi, J. Watanabe
    Toshiba, Yokohama, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
 
  An Injector which consisted of a Radio Frequency Quadrupole (RFQ) and Drift Tube Linacs (DTLs) were designed for carbon cancer therapy system. An extraction energy of RFQ was 0.6 MeV/u, an extraction energy of DTLs was 4 MeV/u, frequency is 200MHz. To apply a compact solid-state power amplifier system, we designed one high-Q RFQ and two high-Q DTLs which had a triplet Quadrupole magnet between DTLs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA104 Design of New Spectrum Data Acquisition System 4707
 
  • Z.X. Shao, H. Gao, W. Liupresenter, C.Y. Pan
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Project supported by the National Basic Research Program of China, the National Key Scientific Instrument and Equipment Development Projects, China (2014YQ120351).
To solve the problem of spectrum acquisition in LIBS (Laser-Induced Breakdown Spectroscopy), a real-time data acquisition system was designed based on PSoC (Programmable System-On-Chip). First, the linear array CCD with electronic shutter function TCD1304DG has been used as detector .And then, the AD7621, a 16-bit analog-to-digital converter, was used to convert signal from the AFE (Analog Front End). After that, a high-integrated, low-power PSoC5LP was used as core controller, it works to complete the driver and data communication, including CCD , ADC, FIFO, the USB interface, etc. At last, a WIFI module has been added to the system for the convenience of users as well as follow-up research. The result through board-level testing indicates that the system in the spectrum acquisition is stable and accurate, and the indicators meet the LIBS project requirements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA105 A Novel Side Coupling Standing-Wave Accelerating Structure for a Medical Linac 4710
 
  • Zh. X. Tang, Z.H. Baipresenter, Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  A novel side coupling standing-wave (SW) accelerat-ing tube for low energy medical linac has been designed that operating frequency is 2998 MHz, operating mode is ', final energy is 6 MeV and beam current is 130 mA. A novel bridge hole between an accelerating cavity and coupling cavity has been utilized to reduce the mutual effect between two cavities and improve the anti-jamming capability and the long term stability. The inner end plate of the inlet of the first accelerating cavity in-cludes the nose cone to realize self-focusing in transverse to improve the beam quality. The simulation of the elec-tromagnetic field of structure and beam dynamic has been carried out with the SUPERFISH, CST Microwave studio and Parmela, respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA109 Design and Fuild-Solid-Heat Coupling Analysis of an Electrostatic Deflector for Hust SCC250 Proton Therapy Facility 4713
 
  • S. Hu, K. Fan, L.X.F. Li, Z.Y. Mei, Z.J. Zeng, L.G. Zhang
    HUST, Wuhan, People's Republic of China
 
  The study of proton therapy equipment has earned more and more attention in recent years in China. A superconducting cyclotron based proton therapy facility is being developed for/at Huazhong University of Science and Technology (HUST). The proton beam is extracted by means of electrostatic deflectors followed by a series of magnetic channels. This paper introduces the design of an electrostatic deflector, including the structure optimization and the material selections. In order to minimize the risk of destruction caused by the proton beam loss, fluid-solid-heat coupling analysis for the deflector has been conducted by applying computational fluid dynamics (CFD) on ANSYS 16.0 software. The maximum temperatures of the septum in various cases of cooling water speed, septum thickness and material have been investigated respectively. The result based on thermal analysis will give us a valuable reference to choose a suitable configuration for the deflector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA109  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA111 Central Region Design for a Superconducting Cyclotron in the HUST Proton Therapy Facility 4716
SUSPSIK116   use link to see paper's listing under its alternate paper code  
 
  • Z.Y. Mei, K. Fan, S. Hu, L.X.F. Li, Z.J. Zeng, L.G. Zhang
    HUST, Wuhan, People's Republic of China
 
  A 250 MeV isochronous superconducting cyclotron was adopted in the HUST proton therapy facility. Since the proton beam quality is often limited by the parameters of the central region, special care is given to the design and optimization of the central region to obtain a qualified proton beam using for treatment. An internal proton PIG source with constant arc current is adopted to meet the stability requirements of the beam. Furthermore, a puller followed by an adjustable slit and a fixed vertical collimator are installed to maintain a good centering and vertical focusing beam with maximum intensity. In order to meet the requirement of the intensity modulated proton therapy (IMPT), a vertical kicker is used just followed the puller. The central region structure is optimized iteratively with the simulation results of the OPERA3D and the CYCLONE code. An optimum central region structure has been obtained with RF phase acceptance is around 24°. This paper presents the design parameters of the central region and the results of the proton beam simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA112 Progress of the Beamline and Energy Selection System for HUST Proton Therapy Facility 4719
 
  • B. Qin, Q.S. Chen, K. Fan, M. Fan, X.Y. Fang, D. Li, Z.K. Liang, K.F. Liu, X. Liu, P. Tan, J. Yang
    HUST, Wuhan, People's Republic of China
  • W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 2016YFC0105305
HUST proton therapy facility is a 5 years National Key Research and Development Program of China. This facil-ity is based on an isochronous superconducting cyclotron with two gantry treatment-rooms and one fixed beamline treatment station. The status for physical and technical design of the beamline and Energy Selection System (ESS) will be introduced in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA113 Inverse Problem-Based Magnetic Characterization of Weekly Magnetic Alloys 4722
SUSPSIK118   use link to see paper's listing under its alternate paper code  
 
  • A. Parrella, M.P. Ramos
    IT, Lisboa, Portugal
  • P. Arpaia, A. Liccardo
    Naples University Federico II, Science and Technology Pole, Napoli, Italy
  • M.C.L. Buzio
    CERN, Geneva, Switzerland
 
  Understanding the magnetic properties of materials used in accelerator components is becoming more and more important. For example, in the upcoming LHC upgrade at CERN, the increasing luminosity will boost the radiation dose received by the accelerator magnet's coil and consequently decrease its lifespan. Hence, a radiation shield with relative permeability less than 1.005 is required. The goal of this research is to design and validate a new method for characterizing weekly magnetic materials, suitable to be used in quality control of series production. The proposed method is based on inverse analysis approach coupled with a finite-element model. A material with unknown permeability is inserted in the air gap of a dipole magnet and the consequent perturbations of the dipole background flux density are measured. The magnetic permeability is then identified through gray-box inverse modelling, based on a finite-element approach. The results have been used to predict the magnetic impact of the radiation shield and develop further research on this subject.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA114 Status of High-Efficiency Klystron Development for the PLS-II and PAL-XFEL 4726
 
  • S.J. Park, H.S. Han, W.H. Hwang, S.D. Jang, Y.D. Joo, K.R. Kim, C.D. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.H. Hwang, S.S. Jang
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • S.Y. Hyun, H.S. Seo, D.H. Yu
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
 
  Funding: This work was supported by the National R&D program (grant number: 2016R1A6B2A01016828) through the National Research Foundation of Korea (NRF).
We are developing a high-efficiency klystron for use in the PLS-II(Pohang Light Source II) and the PAL-XFEL in the Pohang Accelerator Laboratory. Since the PLS-II and the PAL-XFEL are already running with ~70 klystron modulator systems, newly developed klystrons should be designed to fit into existing installation spaces and power supplies, and their overall lengths(< 2 m) and beam perveances(2 upervs) should not be changed. In order to achieve the high efficiency with aforementioned boundary conditions, we are going to adopt a multi-cell output cavity in which, unlike those of the the SLAC X-band and KEK C-band klystrons, the cell frequencies are independently tuned to provide maximum beam-to-rf power conversion. In this article we report on our physics and engineering design efforts to achieve the high efficiency with minimum instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA120 Present Status of the SC202 Superconducting Cyclotron Project 4730
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, G. Kazakova, N.A. Morozov, D.V. Popov, E.V. Samsonov, G. Shirkov, S.G. Shirkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region, Russia
  • Y.F. Bi, G. Chen, Y. Chen, K.Z. Ding, H. Feng, J. Li, Y. Song, Y.H. Xie, Q. Yang, J. Zheng
    ASIPP, Hefei, People's Republic of China
  • V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  In 2015 the joint project with ASIPP (Hefei, China) on design and construction of superconducting proton cyclotron SC202 was started. Two copies of SC202 shall be produced, according to the Collaboration Agreement between JINR and ASIPP. One will be used for proton therapy in Hefei and the second one will be used to replace the Phasotron in the research and treatment program on proton therapy at JINR. Recent status of the SC202 superconducting cyclotron for hadron therapy design and manufacture is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA121 Focusing and Bunching of Ion Beam in Axial Injection Channel of IPHC Cyclotron TR24 4733
 
  • N.Yu. Kazarinov, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
  • T. Adam, F.R. Osswald, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  The CYRCé cyclotron (CYclotron pour la ReCherche et l'Enseignement) is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI (Canada) delivers a 16-25 MeV proton beam with intensity from few nA up to 500 mcA. The solenoidal focusing instead of existing quadrupole one is proposed in this report. The changing of the focusing elements will give the better beam matching with the acceptance of the spiral inflector of the cyclotron. The parameters of the focusing solenoid is found. Additionally, the main parameters of the bunching system are evaluated in the presence of the beam space charge. This system consists of the buncher installed in the axial injection beam line of the cyclotron. The using of the greedless multi harmonic buncher may increase the accelerated beam current and will give the opportunity to a new proton beam applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA123 Neutron Doses Due to Beam Losses in a Novel Concept of a Proton Therapy Gantry 4736
 
  • V. Talanov, D.C. Kiselev, D. Meer, V. Rizzoglio, J.M. Schippers, M. Seidel, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  A novel design of a gantry for proton therapy is investigated in which a degrader and emittance limiting collimators are mounted on the gantry. Due to the interactions of protons in these components there will be an additional neutron dose at the location where a patient is positioned during a proton therapy. The results of numerical study of this additional dose are presented. Neutron prompt dose at the patient position is estimated through the Monte Carlo simulation using the MCNPX 2.7.0 particle transport code. Secondary neutron and photon fluxes from the distinct beam loss points are taken into consideration and the resulting dose is calculated using realistic estimates of beam losses. The dependence of the dose on the beam energy and individual impacts of each loss point on the total dose at the patient position as well as on critical beam line components are estimated and potential design constraints are discussed. It has been found that compared with a conventional gantry the expected additional dose is higher but the optimization of the beam line configuration and additional shielding shall help to reduce the dose to an acceptable value.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA124 Simulations and Measurements of Proton Beam Energy Spectrum After Energy Degradation 4740
 
  • A. Gerbershagen, A. Adelmann, R. Dölling, D. Meer, V. Rizzoglio, J.M. Schippers
    PSI, Villigen PSI, Switzerland
 
  At the proton therapy facility PROSCAN of the Paul Scherrer Institute the energy modulation of the cyclotron generated proton beam is performed via material insertion into the beam trajectory. The energy spectrum of the particles propagating forwards after such procedure has been simulated and measured. The current paper summarizes the results of these simulations and measurements and illustrates their significance for the future developments of a gantry for proton therapy at the Paul Scherrer Institute.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA125 Status of Commissioning of Gantry 3 at the PSI PROSCAN Facility 4744
 
  • A. Koschik, J.P. Duppich, M. Eichin, P. Fernandez Carmona, A. Gerbershagen, A.L. Lomax, D. Meer, S. Safai, J.M. Schippers, D.C. Weber
    PSI, Villigen PSI, Switzerland
 
  Paul Scherrer Institute currently extends its PROSCAN facility with a third gantry treatment room - Gantry 3, which is realized in a research collaboration with Varian Medical Systems. The main research goals at the PROSCAN facility include further development of precise spot scanning and optimized beam delivery with low dead-time for treatment of moving targets. Consequently Gantry 3 is designed to feature advanced pencil beam scanning technology with a large scan field size of 30x40cm, integrated cone beam CT functionality and will in the future allow fast energy layer switching. The main challenge in realizing Gantry 3 is the integration of the Varian Gantry into the existing PROSCAN control system environment, allowing seamless beam operation. Installation of the additional treatment room has started in summer 2015 followed by the integration and technical commissioning phases of the Gantry in 2016, all during full operation of the existing treatment areas at our facility. We report about the special challenges and achieved performance results during commissioning of the Varian Gantry system in combination with the PSI PROSCAN facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA126 Monte Carlo Simulation of Electron Beam Irradiation System for Natural Rubber Vulcanization 4747
SUSPSIK119   use link to see paper's listing under its alternate paper code  
 
  • K. Kosaentor
    IST, Chiang Mai, Thailand
  • E. Kongmon, S. Rimjaem, J. Saisut, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
 
  This paper presents the results of Monte Carlo simulation of electron beam irradiation system for natural rubber vulcanization, which is underway at Chiang Mai University in Thailand. The accelerator system can produce electron beams with adjustable energy and current in the ranges of 0.5-4 MeV and 10-100 mA, respectively. The electron beam exits from vacuum environment in the accelerator to the atmospheric air through a titanium (Ti) window. The electron dose absorption in Ti window and air was calculated by using the program GEANT4. The simulation results show that 50 μm Ti foil causes the energy loss of 1 and 18% for the beam of 4.0 and 0.5 MeV, respectively. The air gap between vacuum window and rubber surface is adjustable from 180 mm to 540 mm. The total beam energy loss of around 8-17% and 1-3% from the initial energies of 0.5 and 4 MeV, respectively. The proper depth of the natural rubber for the vulcanization process is 0.13 to 1.68 cm with the surface dose of 5.32 kGy for 0.5 MeV electron beam and 3.34 kGy for 4.0 MeV electron beam at the pulse repetition rate of 200 Hz. Accordingly, the treatment time of around 10-15 second per irradiated point is required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA128 Preliminary Test Setup of the Metu Defocusing Beam Line, an Irradiation Test Facility in Turkey 4750
 
  • A. Gencer, S. Akçelik, A. Avaroğlu, M.S. Aydın, G. Kılıçerkan Başlar, B. Bodur, B.M. Demirköz, U. Kılıç, E. Özipek, I. Sahin, R. Uzel, D. Veske, M. Yigitoglu
    Middle East Technical University, Ankara, Turkey
  • I. Efthymiopoulos, A. Milanese
    CERN, Geneva, Switzerland
 
  Funding: Turkish Ministry of Development
METU-Defocusing Beam Line (METU-DBL) Project has been started in August 2015 and aims to construct a beam line at Turkish Atomic Energy Authority Sarayköy Nuclear Education and Research Center Proton Accelerator Facility to perform Single Event Effect (SEE) tests for the first time in Turkey. The METU-DBL is 8m-long and has quadrupole magnets to enlarge the beam size and collimators to reduce the flux. When complete the METU-DBL will provide a beam that is suitable according to ESA ESCC No. 25100 Single Event Effects Test Method and Guidelines standard. The METU-DBL beam size is 15.40cm x 21.55cm and the flux will be variable between 105 p/cm2/s and 1010 p/cm2/s. The METU-DBL will serve space, particle, nuclear and medical physics communities starting from 2018 with performing irradiation tests. A preliminary test setup is being constructed towards first tests in March 2017. The beam size will be 6cm x 8cm and the flux will be 1.4x109 p/cm2/s for preliminary test setup. The METU-DBL project construction status for the preliminary test setup is presented in this poster.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA128  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA129 Spatial Distributions of natU(n, f), 238U(n, g) Reaction Rates in Spallation Neutron Fields Produced by Deuterons and 12C Ions on the Massive Uranium Target 4753
SUSPSIK120   use link to see paper's listing under its alternate paper code  
 
  • A. Zhadan, V.V. Sotnikov, V.A. Voronko
    NSC/KIPT, Kharkov, Ukraine
  • S.I. Tyutyunnikov
    JINR, Dubna, Moscow Region, Russia
  • P. Zhivkov
    INRNE, Sofia, Bulgaria
 
  The results of the experiments carried out within the framework of Energy and Transmutation of RAW at JINR NUCLOTRON accelerator are presented. The target assembly QUINTA consisting of 512 kg natural uranium was irradiated by deuteron and carbon beams with energies 1, 2, 4 and 8 GeV (deuterons), 24 and 48 GeV (carbon). Spatial distribution and total number of capture reaction and fission reaction rates was obtained using the activation technique. The integral number of fissions reactions in the volume of uranium target remains approximately constant within our statistical errors for 1, 2, 4 and 8 GeV deuteron beams and for 24 and 48 GeV carbon beams (per one primary particle and per 1 GeV of beam energy). For the integral number of capture reactions with deuteron beams we have seen maximum at 2 GeV. Some of the obtained experimental data was analyzed using the MCNPX transport code. For spatial distribution of reaction rates in case of 4 and 8 GeV deuteron beams we have seen a discrepancy between the experimental and calculated values in backward direction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA130 Modelling PET Radionuclides Production in Tissue and External Targets Using Geant4 4757
SUSPSIK117   use link to see paper's listing under its alternate paper code  
 
  • A. Amin, R.J. Barlow
    IIAA, Huddersfield, United Kingdom
  • C.M. Hoehr, C. Lindsay
    TRIUMF, Vancouver, Canada
  • A. Infantino
    CERN, Geneva, Switzerland
 
  The Proton Therapy Facility in TRIUMF provides 74 MeV protons extracted from a 500 MeV H cyclotron for ocular melanoma treatments. During treatment, positron emitting radionuclides such as C-11, O-15 and N-13 are produced in patient tissue. Using PET scanners, the isotopic activity distribution can be measured for in-vivo range verification. A second cyclotron, the TR13, provides 13 MeV protons onto liquid targets for the production of PET radionuclides such as F-18, N-13 or Ga-68, for medical applications. The aim of this work was to validate Geant4 against FLUKA and experimental measurements for production of the above-mentioned isotopes using the two cyclotrons. The results show variable degrees of agreement. For proton therapy, the proton-range agreement was within 2 mm for C-11 activity, whereas N-13 disagreed. For liquid targets at the TR13 the average absolute deviation ratio between FLUKA and experiment was 1.9±2.8, whereas the average absolute deviation ratio between Geant4 and experiment was 0.6±0.4. This is due to the uncertainties present in experimentally determined reaction cross sections.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA131 Biological Effectiveness of Proton and Ion Beam Therapy: Studies Using G4-DNA 4761
 
  • R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • P. Thongjerm
    IIAA, Huddersfield, United Kingdom
 
  We have used the Geant4-DNA program to investigate on a radiobiological level the interaction of various types of particles within cells, to identify relationships between irradiation and damage to DNA, leading to cell death. Although the physical attributes of particle therapy clearly hold a benefit over conventional radiotherapy, the biological effects hold uncertainties, and modelling the way particles interact with tissue on a cellular level can reduce these. The understanding of the energy deposition pattern along the particle track and consequent probabilities of producing DNA cluster breaks enables us to predict the effects of a particle beam on a microscopic level, which can aid treatment planning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA132 A Study of Potential Accelerator Production of Radioisotopes for Both Diagnostics and Therapy 4765
 
  • N. Ratcliffe, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
 
  There is currently much interest in accelerator based replacements for radioisotope production. The primary focus is the use of compact low energy (<30MeV) proton accelerators that can provide local on-site production of short lived isotopes and as a replacement for the current reactor production of important isotopes such as Ga-68. As part of a study into the viability of this production method this work undertakes a benchmarking study the GEANT4 code using the new low energy data-driven physics list QGSPBICAllHP for the production of significant diagnostic and therapy isotopes such as F-18 and Ga-68. results from these simulations will be compared to experimental cross-sections and other codes to determine reliability before being used to further asses the activity producible using these reactions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA133 HEATHER - HElium Ion Accelerator for RadioTHERapy 4768
 
  • J. Taylor, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • S. Green
    University Birmingham, Birmingham, United Kingdom
  • C. Johnstone
    Fermilab, Batavia, Illinois, USA
 
  A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He2+ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA134 Coupled Longitudinal and Transverse Beam Dynamics Studies for Hadron Therapy Linacs 4772
 
  • R. Apsimon, G. Burt, S. Pitman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A.F. Green, H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Precise proton therapy planning can be assisted by augmenting conventional medical imaging techniques with proton computed tomography (pCT). For adults this requires an incident proton energy up to at least 330 MeV, an energy not readily accessible using cyclotrons. We are presently constructing a prototype of the ProBE 54 MV/m 3GHz post-cyclotron booster linac as a compact method to achieve 330 MeV in the context of the Christie Hospital proton therapy centre, to be tested in the research room there. In this paper, we present beam dynamics studies and tracking simulations of proton beams through the booster region. The longitudinal and transverse particle transmission is calculated from tracking simulations and compared to theoretical models to help understand how best to optimise the optics design through the ProBE region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA134  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA135 ProBE: Proton Boosting Extension for Imaging and Therapy 4776
 
  • S. Pitman, R. Apsimon, G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A.F. Green, H.L. Owen
    UMAN, Manchester, United Kingdom
  • A. Grudiev, A. Solodko, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: This work was funded by STFC
The ProBE linac aims at accelerating protons from a particle therapy cyclotron to the c.330 MeV required for proton tomography. To obtain the c. 55 MV/m gradients required to achieve 100 MeV gain in a suitably short distance, we propose the use of a high-gradient S-band side-coupled standing-wave structure. In this paper we discuss the progress toward the testing of the prototype at the S-box facility at CERN.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA136 Non-Invasive Online Beam Monitor Using LHCb VELO 4780
 
  • R. Schnuerer
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch, S.L. Yap, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk'odowska-Curie grant agreement No 675265
Online beam monitoring is essential for ion beam therapy to assure effective delivery of the beam and maintain patient safety for cancer treatment. One candidate for such a monitoring device is the LHCb Vertex Locator (VELO) detector. It is a position sensitive silicon detector with an advantageous semi-circular design which enables approaching the core of the beam without interfering with it. In this contribution, tests using an infrared laser to calibrate the detector and obtain information about its dynamic range, spatial and time resolution will be discussed. Initial results from using the detector at the 60 MeV proton therapy beamline at the Clatterbridge Cancer Centre (CCC), UK are also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA137 A Monte Carlo Approach to Imaging and Dose Simulations in Realistic Phantoms Using Compact X-Ray Source 4783
 
  • E. Skordis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E. Skordis, V. Vlachoudis
    CERN, Geneva, Switzerland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  X-ray emitters are amongst the most widely used tools in medicine. Based on compact electron beams, they are utilised for a range of applications, including medical imaging and cancer treatment. The optimisation of a specific X-ray source relies on detailed simulation studies into the achievable resolution and intensity distribution. Monte Carlo (MC) codes are widely used in the medical community for dose estimation to patients and the environment. They are also ideally suited for simulating 3D intensity distributions in realistic environments. This demands accurate and reliable physical models capable of handling all components of the expected radiation field. In this paper the capabilities of the FLUKA MC code to simulate complex X-ray sources are presented. Advanced phantoms, based on imported DICOM format, are used to evaluate the dose to relevant areas, including the patient, individual organs and the treatment room. It is also shown how they can provide a good basis to reproduce radiography images by scoring photon fluencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA138 Optimization of Medical Accelerators within the OMA Project 4787
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 675265.
Although significant progress has been made in the use of particle beams for cancer treatment, an extensive research and development program is still needed to maximize the healthcare benefits from these therapies. The Optimization of Medical Accelerators (OMA) is the aim of a new European Network. OMA joins universities, research centers and clinical facilities with industry partners to address the challenges in treatment facility design and optimization, numerical simulations for the development of advanced treatment schemes, and in beam imaging and treatment monitoring. This contribution gives an overview of the 15 R&D projects that are covered within the project and reports on initial results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA138  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA139 Relative Insensitivity to Inhomogeneities on Very High Energy Electron Dose Distributions 4791
 
  • A. Lagzda, R.M. Jones
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • K. Kirkby
    The Christie NHS Foundation Trust, Manchester, United Kingdom
 
  Funding: Science and Technology Facilities Council, United Kingdom Cockroft Institute, United Kingdom Christie Hospital, Manchester, United Kingdom
We investigated the effects of heterogeneous regions on dose deposition of very high-energy electrons (VHEE) using both Geant4 simulations and experiments performed at the CALIFES facility at CERN. Small air and acetal plastic (bone equivalent) cavities were embedded in a water phantom and irradiated with a 197 MeV electron beam. Experimentally determined transverse dose profiles were acquired using radiation sensitive EBT3 Gafchromic films embedded in the water phantom at various depths. EBT3 Gafchromic films were found to be a suitable dosimeter for relative dose dosimetry of VHEE beams. Simulated and measured results were found to be consistent with each other and the largest discrepancy was found to be no more than 5%. Dose profiles of VHEE beams were found to be relatively insensitive to embedded high and low density geometries.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA139  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA140 Superconducting Gantry Design for Proton Tomography 4795
 
  • E. Oponowicz, H.L. Owen
    UMAN, Manchester, United Kingdom
 
  Precise proton therapy planning can be assisted by augmenting conventional medical imaging techniques with proton computed tomography (pCT). For adults this requires an incident proton energy up to around 330 MeV, requiring superconducting magnets if an imaging gantry is to replace a conventional 230-250 MeV gantry in the same space. Here we present optics considerations for a superconducting gantry to deliver 330 MeV protons within the context of the future Christie Hospital proton therapy centre, where it is proposed to increase the proton energy in the future with a booster linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA141 Non-Destructive Measurement of Electron Microbunch Separation 4798
SUSPSIK122   use link to see paper's listing under its alternate paper code  
 
  • H. Zhang, G. Doucas, H. Harrison, I.V. Konoplev, A.J. Lancaster
    JAI, Oxford, United Kingdom
  • A. Aryshev, M. Shevelev, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
 
  With the development of femtosecond lasers, the generation of micro-bunched beams directly from a photocathode becomes routine; however, the monitoring of the separation is still a challenge. We present the results of proof-of-principle experiments measuring the distance between two bunches via the amplitude modulation analysis of a monochromatic radiation signal. Good agreement with theoretical prediction is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA143 Beam-Breakup Studies for the 4-Pass Cornell-Brookhaven Energy Recovery LINAC Test Accelerator 4801
 
  • W. Lou, J.A. Crittendenpresenter, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University and Brookhaven National Laboratory are currently designing the Cornell-BNL ERL Test Accelerator (CBETA). To be built at Cornell's Wilson Lab, CBETA utilizes the existing ERL injector and main linac cryomodule (MLC). As the electron bunches pass through the MLC cavities, higher order modes (HOMs) are excited. The recirculating bunches interact with the HOMs, which can give rise to beam-breakup instability (BBU). Here we present simulation results on how BBU limits the maximum achievable current, and potential ways to improve the threshold current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA146 Robust Linac Platform for Wide Replacement of Radioactive Sources 4805
 
  • A.V. Smirnov, M.A. Harrison, A.Y. Murokh, A.Yu. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, S. Boucher, T.J. Campese, J.J. Hartzell, K.J. Hoyt
    RadiaBeam, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy (awards No. DE-SC-FOA-0011370).
To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. Tubular structure with parallel pairs of rods crossed at 90 degrees suggests as high as 36% inter-cell coupling due to inherent compensation along with still substantial shunt impedance. Simultaneously it offers simplified brazing process and may dramatically simplify tuning of the entire structure. A novel design of a multi-cell, single-section, X-band structure for replacement of Ir192 source is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA146  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA147 KlyLac Conceptual Design for Borehole Logging 4808
 
  • A.V. Smirnov, S. Boucher, M.A. Harrison, A.Y. Murokh
    RadiaBeam Systems, Santa Monica, California, USA
  • R.B. Agustsson, D. Chao, J.J. Hartzell, K.J. Hoyt, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
 
  Funding: This work was supported by the U.S. Department of Energy (award No. DE-SC0015721).
Linac-based system for borehole logging exploits KlyLac approach combing klystron and linac sharing the same electron beam, vacuum volume, and RF net-work. The conceptual design tailors delivering 3.5-4 MeV electrons within 3.5 inch borehole at ambient temperatures 150 degrees C to replace 137Cs, >1 Ci source used in borehole logging. The linac part is based on a very robust, high group velocity, cm-wave, standing wave accelerating structure. The design concept features i) self-oscillation analog feedback that automatically provides modal stability; ii) ferrite-free isolation of the klystron; and iii) long accelerating section with large (0.3%) frequency separation between adjacent modes; and iv) low-voltage klystron.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA147  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA148 Inexpensive Brazeless RF Accelerator 4812
 
  • S.P. Antipov, C.-J. Jing, R.A. Kostin, S.V. Kuzikov, J.Q. Qiu
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: DOE SBIR
A simple, inexpensive way to manufacture a standard radio frequency (RF) driven particle accelerator is presented. The simplification comes from two innovations: utilization of LCLS gun - type RF design to avoid an expensive brazing process and copper plating of stainless steel that further reduces manufacturing cost. This is realized by a special structure design where accelerating structure cells are made out of copper plated stainless steel with knife edges and structure irises - copper disks acts also as gaskets for vacuum and RF seal. Besides the reduced cost, brazeless assembly allows integration of effective cooling and magnet optics elements into accelerator cells.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA148  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA151 Halbach Magnets for CBETA and eRHIC 4814
 
  • H. Witte, J.S. Berg, B. Parkerpresenter
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
At Brookhaven National Laboratory two design efforts are underway: eRHIC and CBETA. eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC), which would allow collisions of up to 21 GeV polarized electrons with protons or heavy ions. CBETA is a 150 MeV electron accelerator, aiming to demonstrate essential technology necessary for eRHIC. Both machines employ FFAG arcs and are designated to use permanent magnet material for the required quadrupole magnets. One proposed design is a Halbach magnet; this paper investigates the feasibility of this approach.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA151  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA152 Performance of ATCA LLRF System at LCLS 4817
 
  • J.M. D'Ewart, J.C. Frisch, B. Hong, K.H. Kim, J.J. Olsen, D. Van Winkle
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC02-76SF00515.
The low level RF control for the SLAC LINAC is being upgraded to provide improved performance and maintainability. The new LLRF system is based on the SLAC ATCA common platform hardware. RF control is achieved through a high performance FPGA based DDS/DDC system. The signal processing is designed to be phase insensitive, allowing the use of modest performance on-board digitizer clock and LO. The prototype LLRF control system was installed and used to operate RF station 28-2 in LCLS-I. Design details and prototype performance results will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA152  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA154 LLRF Hardware Testbench 4821
 
  • J.A. Diaz Cruz, S. Biedronpresenter, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • A.L. Benwell, A. Ratti
    SLAC, Menlo Park, California, USA
 
  With continual advances and the development of new technologies, such as superconducting cavities, particle accelerators have become more complex. New accelerator designs have more demanding stability requirements for the cavity RF fields, up to 0.01% in amplitude and 0.01' in phase for hundreds of cavities in Continuous Wave (CW) operation. Compensating for disturbances from mechanical resonances, microphonics, natural couplings and unwanted channel crosstalk is a challenge for the Low Level Radio Frequency (LLRF) control systems. For the upgrade to the Linac Coherent Light Source (LCLS-II) at SLAC, a high performance LLRF control system is being designed and developed to drive the Solid State Amplifiers (SSA) and control the cavity fields within specifications. The different components of the LLRF hardware have been designed, constructed and tested separately. Here, we describe a test environment, still under development, for integration, characterization and qualification of the LLRF system with all the LLRF hardware integrated in a single prototype rack.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)