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Abstract
The study reports on dedicated measurements made with

a single nominal bunch in the LHC at 6.5TeV. First, we
show that a significant amount of second order chromaticity
Q′′ can be introduced in the machine in a well-controlled
manner. Second, we demonstrate that the incoherent beta-
tron tune spread from Q′′ can provide beam stability through
the Landau damping mechanism. This is a first step in the
development of a Q′′ knob to be potentially applied during
regular physics operation in the LHC.

INTRODUCTION
A powerful stabilising mechanism against transverse col-

lective instabilities is Landau damping. It is present when
there is an incoherent spread in the betatron tunes of the
particles in the beam [1, 2]. The spread is a result of
non-linearities in the machine, often introduced by design
through dedicated elements. In the Large Hadron Collider
(LHC), magnetic octupoles are installed to produce a tune
spread depending on the transverse action of the particles
∆Qx,y(Jx, Jy). These Landau octupoles are extensively used
for beam stabilisation during LHC operation [3, 4].
Future high energy machines will operate with beams

of smaller physical transverse emittances making the Lan-
dau octupoles significantly less effective due to the reduced
spread in (Jx, Jy), in particular at higher energy (adiabatic
damping). This may result in a loss of Landau damping of
potentially performance-limiting instabilities. Alternative
methods such as betatron detuning with longitudinal action
∆Qx,y(Jz) are currently under development. Longitudinal
action provides a much larger handle for introducing a tune
spread for Landau damping due to the orders of magnitude
larger spread in Jz compared to (Jx, Jy) of the LHC beams.
After a brief explanation of the theory, the experimental pro-
cedure and the corresponding results are presented alongside
numerical simulations.
Given a machine lattice with non-zero first and second

order chromaticities Q′x,y and Q′′x,y respectively, a particle i
with a relative momentum deviation of δi = ∆pi/p experi-
ences a betatron tune change of ∆Qi

x,y = Q′x,yδi +Q′′x,yδ
2
i /2.

The higher order terms ∝ O(δ3
i ) are neglected here. The

average betatron detuning is the relevant quantity to provide
damping of the slow head-tail instabilities which develop
over many synchrotron periods Ts [2]〈

∆Qi
x,y

〉
Ts
=

Q′′x,y
2

Qs

ηR
Jiz = ax,y

z Jiz . (1)
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Qs denotes the synchrotron tune, η is the slip factor, R the
machine radius, and ax,y

z � Q′′x,yQs/2ηR. The average de-
tuning contains only the term with Q′′x,y . Q′x,y does not
contribute to damping of the slow head-tail instabilities, but
is instead an effective way to impact on the transverse mode
coupling instability (TMCI) threshold [2].

A basic formalism for stabilisation from Q′′ has been de-
veloped by J. Scott Berg and F. Ruggiero [5]. Their work
shows that detuning with longitudinal action leads to an
increase of the stable region in the complex coherent tune
space Re (∆Qcoh) vs. −Im (∆Qcoh), which is equivalent to
Landau damping from magnetic octupoles. Examples of
stability diagrams are shown in Fig. 1 for positive and nega-
tive Q′′ respectively, and assuming an azimuthal mode zero
head-tail instability. The asymmetry of the stable regions is
a result of the strictly one-sided detuning (see Eq. (1)).

Figure 1: Stability diagrams for detuning with longitudinal
amplitude from Q′′ < 0 (red, solid), or Q′′ > 0 (blue,
dashed) respectively.

EXPERIMENTAL PROCEDURE
Q′′ is an energy dependent aberration that depends mainly

on the integral of the terms β′(δ)k1, β′(δ)Dk2, and D2k3
around the machine lattice [6, 7], where k1, k2, and k3 are
the quadrupolar, sextupolar, and octupolar strengths respec-
tively, β′ = ∂β/∂δ is the derivative of the beta function
and D denotes the dispersion function. β′ itself depends
on k2, and for each arc, beam, and plane in the LHC there
are two sextupole families with interleaved elements at a
phase advance of about π. The main sextupoles can hence
be used to enhance β′(δ) and generate Q′′. For each arc,
beam, and plane the two sextupole families are powered
with opposite signs. The resulting knobs, called QPPF and
QPPD, are nearly orthogonal for the two planes. This makes
the independent control of Q′′x through QPPF, and of Q′′y
through QPPD, possible. The amount of Q′′ predicted by
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MAD-X [8] as a function of the knobs is shown in Fig. 2 for
the two LHC beams and both transverse planes.

Powering the main sextupoles does not only introduce Q′′,
but also creates non-negligible detuning coefficients αmn =

∂Qm/∂(2Jn), m, n ∈ {x, y}, which give rise to detuning
with transverse amplitude and hence Landau damping in
the same manner as magnetic octupoles. For the studies
shown here, the latter is an undesired side effect and needs
to be disentangled from the stabilisation through Q′′. This
is achieved by means of tracking simulations.

Experiment
The aim of the study is to demonstrate stabilisation of a

single nominal bunch at flat top bymeans of Landau damping
predominantly from detuning with longitudinal rather than
transverse amplitude. The LHC impedance-driven head-tail
instabilities are characterised by Re (∆Qcoh) < 0 in both
planes. From theory (Fig. 1) and tracking simulations, the
most effective way to stabilise them is by using Q′′x,y � 0.

To measure the amount of Q′′ present in the machine, an
rf modulation is applied to vary the momentum deviation
δ(t) of the beam. This translates into time-varying beta-
tron tunes Qx,y(t), obtained from the base-band tune metre
(BBQ). Figure 3 (left) shows an example measurement of
BBQ spectral data, where several synchrotron side bands
can be seen. One side band is selected consistently through-
out the modulation period as illustrated by the overlaid red
markers in Fig. 3, and binned with respect to δ. Q′ and Q′′

are extracted from a weighted second order polynomial fit
of Q vs. δ (see Fig. 3, right).
Four bunches (two in each beam) were accelerated to

6.5TeV. For QPPF = QPPD = 0 and with the Landau oc-
tupoles turned off, the amount of Q′′x,y at flat top is approxi-
mately zero, both in measurements and MAD-X simulations
(Table 1, upper half) [9]. To introduce the desired amount
of Q′′ several iterations were made by varying the sextupole
knobs, re-measuringQ′′, and comparing the results toMAD-
X simulations. At that stage, the octupoles were powered
with |Ioct | = 320A to ensure beam stability. The aim was
to set QPPF and QPPD in such a way as to end up with
Q′′x,y ≈ −40′000 in both beams once the current in the Lan-
dau octupoles would be reduced to zero. The additional
contribution to Q′′ from the octupoles in dispersive regions
was taken into account using MAD-X. The final values of
Q′′x,y are summarised in Table 1 (lower half) and compared to

Figure 2: Q′′ values predicted by MAD-X in both beams
and planes as a function of QPPF and QPPD.

Figure 3: Left: BBQ spectral data acquired during beam
momentummodulation overlaid with the selected tune peaks
(red). Right: Quadratic fit (blue line) to data (red).

MAD-X calculations showing a good agreement and the suc-
cess of the procedure. Once the desired sextupole settings
were reached, the currents in the Landau octupoles were
reduced in steps of 40A down to 0A. At 0A, a horizontal
instability occurred in beam 1 for one of the two bunches
while all the other bunches remained stable. The observed
head-tail instability was an azimuthal mode m = −1 with
a rise time of τ ≈ 28.5 s [9]. The top right plot in Fig. 4
displays the overlapping traces acquired from the Head-Tail
monitor [10] showing a pattern with three nodes.

The study was continued with another fill with lower val-
ues of QPPF and QPPD. This time, at zero Landau octupole
current all the bunches remained stable. They could be made
deliberately unstable by a strong reduction of Q′′ [9].

Table 1: Q′′ MAD-X simulations vs. measurements for the
two LHC beams (B) without and with powering of the main
sextupoles (MS) for zero Landau octupole current.

B MS Q′′x [103] Q′′y [103]
QPPF QPPD Sim. Meas. Sim. Meas.

1 0.0 0.0 0.0 −0.4 ± 2.1 −0.3 −0.4 ± 2.1
2 0.0 0.0 0.1 −0.3 ± 2.1 −0.1 −0.4 ± 2.2

1 1.5 1.9 −37.5 −43.9 ± 5.6 −38.6 −39.6 ± 6.3
2 1.5 2.6 −36.9 −31.3 ± 4.9 −36.8 −37.0 ± 6.2

ANALYSIS AND INTERPRETATION
In 2016, the single-bunch instability threshold was mea-

sured to be at a current of I foct = −Idoct = 80+35
−20 A in the

focusing and defocusing Landau octupoles respectively [3].
This is for flat top optics at 6.5TeV, nominal bunch pa-
rameters, and 11 ≤ Q′ ≤ 14. Using the LHC impedance
model, PyHEADTAIL [11] simulations predict a Landau
octupole threshold of 105 ± 5A. The contribution from the
Landau octupoles to the Q′′ are included in the simulation
(Q′′x ≈ 5′000, Q′′y ≈ −1′400 at Ioct = 105A). Both ex-
perimental and simulation data show that the most unstable
mode is a weak head-tail instability with azimuthal and ra-
dial mode numbers (0, 2) respectively. The results are fully
consistent which demonstrates the reliability of the model for
the machine configuration used during the Q′′ experiments.
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Figure 4: Head-tail mode patterns from measurements (top)
and simulations (bottom) for QPPF = QPPD = 0 (left) and
for QPPF = 1.5, QPPD = 1.9 (right).

At the experimental working point of QPPF = 1.5 and
QPPD = 1.9 (beam 1), the detuning coefficients αmn gen-
erated by the sextupoles are comparable to LHC Landau
octupole currents of |Ioct | ≈ 50A (αxx), ≈ 20A (αyy) and
≈ 30A (αxy) respectively. They are all well below the above
mentioned single-bunch octupole stability threshold which
indicates that an important contribution to beam stability
must have been provided by Q′′. To understand the hori-
zontal instability observed in one of the bunches, simula-
tion studies are required. Optics results from MAD-X and
PTC [12], among them the dependencies of Q′′x,y and αmn

on the QPPF and QPPD knobs, are fed into PyHEADTAIL
such that both the stabilising effects from detuning with
transverse and longitudinal amplitude are modelled. In all
the studies, the Landau octupoles are switched off.
In a first set of simulations, the tune spread from Q′′ is

deliberately excluded to assess whether the detuning from
only the coefficients αmn introduced by QPPF, QPPD is
enough to provide stability at the working point. The results
are summarised in Fig. 5 (top) for the two planes of beam
1. The colour code shows the emittance growth over the
simulation period (1.8 · 106 turns) where blue means stable
and white means unstable. The dots represent the azimuthal
mode number of the instability. Most of the area is unstable,
in particular the working point (orange). This demonstrates
that the αmn from sextupoles indeed do not provide sufficient
Landau damping. The instability is a mode m = 0 with two
nodes in the head-tail pattern, consistent with earlier LHC
experiments. Figure 4 (left) shows a comparison between
the head-tail mode patterns acquired during the experiments
(top) and in simulations (bottom).

The second set of simulations includes also the effects
from Q′′. Two main observations can be made. First, large
regions of stability are created, separated by an unstable band
in both planes showing a different head-tail mode m = −1
(red). The reason for that is that Q′′ changes the effective
impedance, similarly to Q′. This effect is described by the
Vlasov formalism [2] and is currently under more detailed
study. It affects the complex coherent tune shift and can also

change the most unstable mode. The results shown in Fig. 5
are hence a combination of a change in effective impedance,
and Landau damping, both introduced by Q′′. The stable
region between the two unstable bands m = 0 and m = −1
arises from sufficient Landau damping of both modes. The
further increase of QPPF (QPPD), however, leads to a change
of the effective impedance, such that Landau damping is lost
for the m = −1 mode. For larger amounts of Q′′, however,
all the instabilities are suppressed. The second observation
is that the working point, although essentially stable, lies
very close to the unstable band of m = −1. Indeed, the
experimental data clearly revealed the observed horizontal
instability to be of mode m = −1. The LHC Head-Tail mon-
itor signal is in excellent agreement with the predictions
from simulations. Both of them feature a three-node coher-
ent oscillation pattern along the bunch (Fig. 4, right). Thus,
experiment and simulation agree both in the azimuthal as
well as the radial mode number of the excited instability.

CONCLUSIONS
Stabilisation of nominal bunches from Q′′ was studied

experimentally in the LHC. It was demonstrated that Q′′

can be introduced in a well-controlled manner. Beam dy-
namics simulations clarify that detuning from transverse
amplitude alone cannot explain the observations made in the
machine and that Q′′ contributes to beam stability. Simula-
tions, experiments, and ongoing analytical studies show that
Q′′ introduces both, Landau damping, and a change of the
effective impedance. However, further studies are needed to
assess the practicality of stabilisation with Q′′.
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Figure 5: Simulation studies summarising the observed in-
stabilities in the (QPPF, QPPD)-plane, both without (top)
and with (bottom) Q′′ effects.
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