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Abstract

The report takes a statistical approach in the study of distri-
bution evolution of the proton beamwithin the ESS linac and
reports a new technique of pinpointing the non-linear space-
charge effect of the propagating proton beam. By using the
test statistic from the nonparametric Kolmogorov-Smirnov
test the author visualises the change in the normalised distri-
butions by looking at the supremum distance between the
cumulative distribution functions in comparison, and the
propagation of the deviation throughout the ESS linac. This
approach identifies changes in the distribution which may
cause losses in the linac and highlights the parts where the
space-charge has big impact on the beam distribution. Also,
an Extreme Value Theory approach is adopted in order to
quantify the effects of the non linear forces affecting the
proton beam distribution.

INTRODUCTION:
THE ESS PROJECT

The European Spallation Source (ESS), presently under
construction, will be the highest brightness neutron source
powered by a 5 MW proton linac located in Lund, Sweden.
One of the major tasks of the Beam Physics team is simula-
tions and design of the ESS linac within the ESS Accelerator
Project. As seen in Figure 1, the accelerator consists of a
normal conductive section and a superconductive section.
The normal conductive section consists of five sections: Ion
Source (IS), Low Energy Beam Transport (LEBT), Radio
Frequency Quadrupole (RFQ), Medium Energy Beam Trans-
port (MEBT) and Drift Tube Linac (DTL). This part of the
linac is responsible for the initial acceleration of the proton
beam up to ∼ 90 MeV. The superconductive section consists
of Spoke, medium β, high β elliptical cavities and brings
the beam energy to 2 GeV. The High Energy Beam Trans-
port (HEBT) section will transport the beam and by using
a set of raster systems paint the tungsten target [1]. One
big challenge in such a high power linac the ESS project is
to identify and mitigate losses, both fast (short term, high
power losses that may damage components in the linac) and
slow (continuous and low power losses that can cause ra-
dioactivity in the components). This report will focus on the
slow losses and how to quantify them by using a statistical
EVT approach. Also statistical methods are used to study
the beam distribution evolution. This may add to the under-
standing of where the non-linear forces are prominent and
thus affecting the beam distribution and increase the risk of
causing losses.

Figure 1: A schematic figure of the ESS linac.

BACKGROUND
Hypothesis Tests

A statistical hypothesis is a hypothesis for unknown param-
eters in a distribution, that is testable via a set of observations
of a random variable with that distribution. When testing
for differences between two parameters the test is normally
conducted by testing two data sets against each other; the
test is then called a two-sample test. By asserting an ide-
alised null-hypothesis, one can conduct a statistical test that
examines whether the null-hypothesis can be rejected or not
for a certain statistical significance level [2]. For example,
consider the null (H0) and alternative (H1) hypothesis{

H0 : FX = FY
H1 : FX , FY,

(1)

where X and Y are the random variables (r.vs). We would the
like to test H0 at significance level α. One approach that uses
a quantity measure, the supremum norm, to study the differ-
ences between distributions is the two-sample Kolmogorov-
Smirnov test.

The Two Sample Kolmogorov-Smirnov Test
The two-sample Kolmogorov-Smirnov (KS) test is a sta-

tistical test for testing for differences between theoretical dis-
tributions [3], as formulated in (1), so it is a test for whether
they are the same or not. The test uses the so called KS test
statistic

Dn,n′ = sup
(x,y)∈<

{|FY (y, n) − FX (x, n′)|}, (2)

where FY (y, n) and FX (x, n′) are the empirical n and n′:th-
sample cumulative distribution functions (c.d.fs) of the r.vs
X and Y. The limiting distribution of Dn,n′ , as n, n′ → ∞,
is called the Kolmogorov distribution and is a consequence
of a bivariate Donsker’s theorem cf. [4]. The practical ap-
plication of this is that if n and n′ are sufficiently large, the
null-hypothesis can be rejected for values of the test statistic
that are larger than the upper quantile in the limit distribution.
For finite n, n′ one may instead use the rule to reject the null
hypothesis if

Dn,n′ > c(α)

√
nn′

n + n′
, (3)

THPVA020 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
4458Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D08 High Intensity in Linear Accelerators - Space Charge, Halos



for a level α test, where c(α) is a tabled value. Visually, the
distance of interest is the distance illustrated in Figure 2.

Figure 2: The Dn,n′ distance represented visually.

Normalised Distributions
Many factors effect the protons through the linac, and this

obscures the effects from the non-linearities that is known to
be a major factor in the increase in beam halo and emittance.
A method of monitoring these non-linear effects on the par-
ticles is to normalise the distributions. A simple variable
change removes the effect of correlation 1{

xi = xi
pi =

αi

βi
xi +
√
βi x ′i

(4)

Extreme Value Theory
In EVT one is interested in modelling of the estimation

for the extremal part of a distribution. In order to do infer-
ence in this setting, such as e.g. perform tests for unknown
parameters, the extremes of a data set are examined. At
ESS a quantitative study has been conducted where 20 000
simulations on a linac with imposed stochastic errors in the
QPs (gradient and alignment erros), accelerating cavities
(errors on the accelerating field, phase and their alignment)
and input beam. With these simulations, different observa-
tions of the losses are presented and form a solid foundation
for statistical data analysis. In the Block-Maxima approach,
consider the value of the observed losses (in W) in a certain
section to be:

x̄k = (x1, x2, ...., xk) (5)
that are observations of the random vector

Xk = (X1, X2, ...., Xk) (6)

and consider k different independent, identically distributed
realizations Xk,1, ..., Xk,n of the random vector Xk . Then a
standard result from EVT states that the block maxima

Mn = max
1≤ j≤k

(Xj,n) (7)

properly normalised and scaled, converges in distribution to
a generalised extreme value distribution

GEV(x; µ, σ, ξ) = exp{−[1 + ξ(
x − µ
σ
)]
− 1

ξ } (8)

1 Where x and x’ is are the coordinates in the phase-space notation. α and
β are the Courant-Snyder parameters

as n→ ∞, where -∞ ≤ µ ≤ ∞, σ > 0 and -∞ ≤ ξ ≤ ∞ is
the location, scale and shape parameter respectively. One
important parameter of estimation is the return-value, xp,
which is the value when

P(X ≤ xp) = 1 − p = 1 −
1
m

(9)

with
x̂p = µ̂ −

σ̂

ξ̂
(1 − (−log(p))−ξ̂ ) (10)

as the inverse of the GEV function with a predefined p-value
describing the probability that a big observation xp will
occur within m observations (p = 1

m ). µ̂, σ̂ and ξ̂ denotes
the Maximum Likelihood estimate (MLE) of µ, σ and ξ.

Monte Carlo Methods - The Empirical Bootstrap
Method

Monte Carlo (MC) methods are useful when generating
data for computational purposes. In this report the empirical
(or non-parametric) bootsrap method is used to generate
distributions from which one can calculate the return value,
x̂p . The method is based on a re-sampling routine where the
distribution of maximum losses are regenerated to calculate
the return value for each iteration [5]. This forms a distribu-
tion of return values from which a 100(1-α)% confidence
interval (CI) of the same can be constructed.

Profile Likelihood Method
Another approach to obtain the CI for the return value

is to express the likelihood function in terms of the return
value, x̂p. Then one can maximize likelihood function to
obtain the CI by two-sided likelihood ratio test [6].

Data Generation
To be able to perform comprehensive studies on the max-

imum losses in the ESS linac, simulation is the main tool
for pre-operational studies. The code TraceWin [7] is used
for particle tracking and error simulations. Errors that can
occur in the actual construction of the linac are represented
with stochastic properties because of the uncertainties in
the accuracy in the construction of the designated lattice.
Misalignments of elements (QPs and cavities in this study),
degradation of the fields in the cavities and quadrupoles and
errors in the input beam distribution have been imposed on
the system trying to take a realistic approach.

RESULTS
The results from the distribution analysis and the EVT

are presented below.

Distribution Analysis
The comparison of the distributions can be done by

comparing the input distribution with the distribution at the
n:th element in the accelerator to see how the distributions
change through the linac. However, in this report the change
in distribution between the n:th and the n + 1:th element
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is covered [8] to try to capture the positions in the linac
where the big changes of distribution occur. By applying the
two-sample KS test one can measure the supremum distance
(2) between the n:th and the n+ 1:th cumulative distribution.
To further visualise this quantity, the supremum distance is
plotted at each location in the linac, as Figure 3 shows.

Figure 3: The figure represents the supremum distance be-
tween the n and n+1 distribution in the linac for the x-x’
plane.

As seen in Figure 3, the major peaks are present between
element 179-181, 399-401 and around element 600 which
are the intersections between the MEBT-DTL, DTL-Spokes
and Spokes-MBL. In the first two cases there is a change
from a low phase advance structure to a high phase advance
one and the opposite happens at the end of the DTL, while
at the Spokes-MBL the main cause is the frequency jump.
From a statistical point of view, the change of the locations of
the particles must be statistical significant in order to be able
to say that a distribution is different from another. This test
is done using the KS-test which return a 0 if the distributions
can’t be seen at different, at a statistical significance level α,
and 1 if they can.

EVT
The section of interest for the EVT approach in this report

is the MEBT because of its consistency in the amount of
losses throughout the simulations. For each of the 20 000
simulations, a maximum loss is registered in the MEBT
section and an empirical maximum loss distribution can be
formed, as Figure 4 shows.

Figure 4: The figure represents the distribution of maxumum
losses in the MEBT.

Using (9) the return value is obtained and the confidence
interval is constructed by performing the empirical bootstrap
method on the maximum loss distribution and calculating
a return-value for each iteration (Figure 5). The profile
likelihood method can also be used for the same purpose.

Figure 5: The figure shows the distribution of the return
values using the empirical bootstrap method.

The two methods gave similar results and the maximum
loss one would expect if 100 different machines were to
be tested, with the design values used in this study, would
be between [2.6396 2,7229] W using the Bootstrap method
and between [2,6191 2,7359] W using the profile likelihood
method, with a 95 % certainty.

DISCUSSION
This report highlights a statistical method to monitor the

beam distribution evolution through the ESS linac. By using
statistical tests one can determine where the big changes
occur thus presenting the critical points in the machine. Big
changes in the distribution may cause particles to deviate
from its intended envelope. Knowledge of such changes
might be useful before and during the operation of the ma-
chine, pointing to the usefulness of these methods.
The EVT approach aims to predict extreme events of

losses in the linac. Becausemuch time is spent in the prepara-
tory stages of the accelerator projects one could use the ap-
proach to design the lattice to handle extreme events. The
strenght of EVT in combination withMCmethods is to make
powerful predictions and give estimates of the maximum
loss one might expect at a certain probability level.
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