
ONLINE BUNCH BY BUNCH TRANSVERSE INSTABILITY DETECTION
IN LHC

M.E. Söderén∗, G. Kotzian, M. Ojeda-Sandonís, D. Valuch, CERN, Geneva, Switzerland

Abstract

Reliable detection of developing transverse instabilities
in the Large Hadron Collider is one of the main operational
challenges of the LHC’s high intensity proton run. A full ma-
chine snapshot provided from the moment of instability is a
crucial input to develop and fine tune instability models. The
transverse feedback system (ADT) is the only instrument in
LHC, where a full rate bunch by bunch transverse position
information is available. Together with a sub-micron reso-
lution it makes it a perfect place to detect transverse beam
motion. Very large amounts of data, at very high data rates
(8 Gb/s) need to be processed on the fly to detect onset of
transverse instability. A very powerful computer system (so
called ADTObsBox) was developed and put into operation
by the CERN RF group, which is capable of processing the
full rate data streams from ADT and perform an on the fly
instability detection. The output of this system is a timing
event with a list of all bunches developing instability, which
is then sent to the LHC-wide instability trigger network to
freeze other observation instruments. The device also pro-
vides buffers with raw position data for offline analysis.

INTRODUCTION

Since the ADTObsBox observation system had been
commissioned in 2015, it is used for injection oscillation
transient analysis, with online and offline beam parameter
and transverse feedback parameter extraction. The system
is also an invaluable resource for the machine development
studies, as it is the only place in the LHC machine where
a bunch-by-bunch transverse position data is available for
unlimited number of turns. The positional data are available
to all users or other systems in a form of data arrays through
a subscription to the ObsBoxBuffer FESA class [1].

An online transverse instability detection system has
been designed to detect an onset of transverse instability
with a detailed information about the activity already at
the very time when the activity is detected. By sending a
trigger through the LIST network [2] to all relevant observa-
tion instruments in the LHC, a snapshot of the critical LHC
machine parameters at the time of the instability can be cap-
tured, what greatly simplifies the later analysis of the cause
of the instability. There is no need anymore to blindly record
large amounts of data, with a high probability of missing the
interesting bit. Once the trigger is sent, the other instruments
know where and when to look already.

DETECTION
The system has to be able to detect a large variety of

instability signatures. These include very different rise times
(typically from 100’s turns, up to 100k’s turns) or a very dif-
ferent activity behavior. At the same time, the system should
produce as few false triggers as possible. Various detection
methods have been already tested in the LHC using the BBQ
tune measurement system [3]. The BBQ systemmeasures an
average of transverse activity of all bunches, therefore it is
not completely optimal to detect an instability of individual
bunches. On the other hand, the ADTObsBox has access
to bunch by bunch data, and some of the discussed tech-
niques [4], adopted for very high throughput pickup data can
be employed. The first online detection system, presented in
this paper uses the moving average algorithm.

Algorithm
The algorithm uses three moving averages, each with

subsequently longer integration window. Currently, the win-
dow lengths W of 256, 1024 and 4096 turns are defined. Use
of multiple windows with different lengths allows for reliable
detection of activities with very different rise times. The
algorithm compares the value of the current window (the
average of the last W samples) against a threshold, which is
calculated as an accumulated sum of the previous windows
(see algorithm 1). The detection sensitivity, efficiency and
immunity to perturbations can be adjusted by careful selec-
tion of the β andω parameters. Detection of fast instabilities
happening shortly after injection calls for a higher thresh-
old and usage of only very limited amount of historic data,
while reliable detection of very slowly rising instabilities
requires low relative change and long data records. In the
implementation, each of the three running sums allows for
individual β and ω values.

Analytic Signal Reconstruction
The normalized bunch transverse position is received

by the ADTObsBox in a form of 1 GBit/s stream of 16-bit
integer data (per pickup). The data is sliced turn-by-turn,
converted to float and memory-aligned with 32 bit for AVX2
compatibility [5]. The closed orbit offset is removed by a
two tap notch filter and the bunch oscillation amplitude is
calculated from the position data using the Hilbert trans-
former [6]. This method is already used in the ADT for
analyzing the damper performance [7]. The oscillation am-
plitude is calculated from the I and Q components and passed
to the instability detection algorithm. An overview of the
calculation pipeline can be seen in Fig. 1.

∗ martin.soderen@cern.ch

Proceedings of IPAC2017, Copenhagen, Denmark MOPAB117

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T03 Beam Diagnostics and Instrumentation

ISBN 978-3-95450-182-3
397 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



Data: Oscillation Amplitude(A[n])
Result: instability trigger
/* Prefill avg and avgold with samples */

avg =
W∑
n=0

A[n]
W

;

thres = avg;
/* Do this for every amplitude sample */
while forever do

for W times do
/* update average and remove the

oldest sample */

avg+ = new
A
W

;

avg− = oldest
A
W

;
end
/* ω adjusts the sensitivity */
if thres < ω × avg then

send trigger;
end
/* β can be set to limit the growth

rate of the threshold */
thres=β × avg + (1 − β) × thres;

end
Algorithm 1: Simplified algorithm.

input data
Conversion and splice

float 1x3564
y[n] = x[n] − x[n − 1]

normalized data
yq[n] = H (y[n])

I and Q data
A[n] =

√
y[n]2

q + y[n]2

analytic signal
moving average window

moving average
moving average window

moving average
moving average window

instability detectionLIST network

1

2

3

4

5

Figure 1: The LHC online instability detection pipeline.

Algorithm Tuning and Testing
Data from the ADTObsBox with known transverse in-

stabilities has been stored from the LHC operations during
2016. Algorithm tuning was automated by first manually ex-
tracting interesting data sets and adding meta data about the
instability. A test environment was set up and the pipeline
was tested with this data and many combinations of config-

urations to find the maximum coverage of instabilities and
as few false triggers as possible. Example output from the
algorithm can be seen in Fig. 2.

IMPLEMENTATION
The ObsBoxes are four off-the-shelf SuperMicro 6028U-

TR4+ servers which are capable of concurrent online data
analysis [8]. On the servers there are several instances of the
ObsBoxBuffer FESA class running, which allows for data
acquisition of different pickups and for different number of
turns. Specific buffers, providing the full throughput of 1
Gbit/s per pickup are reserved for online analysis. A FESA
class called ALLADTCopra, subscribes to these buffers and
performs the online instability analysis.

Handling the High Throughput
The biggest challenge for the online transverse instabil-

ity detection is to handle the high data throughput. The
application needs to process a data-stream at 1 Gbit/s. The
first implementation was a proof of concept where the im-
plementation was non-multithreaded and used no special
instructions or matrix libraries. It just used standard C++
operations which were applied to a complete data package
which in this case is a 4094×3564 matrix. In that implemen-
tation the analysis of 4096 turns took 6 seconds. A simple
multi threaded library called ParallelFir was implemented
which did the analysis in the same way but the computation
was split up, so each thread worked on a sub-set of bunches.
This reduced the computation time to 1.8 seconds.
By optimizing ParallelFir using SSE4.1 instructions the com-
putation time was further reduced to 0.6 seconds. To greater
improve the performance, a pipeline design was introduced.
Each stage in the pipeline uses extensively the Advanced
Vector Extension (AVX2) instruction set introduced by Intel
in their Haswell micro-architecture. It uses 256 bit regis-
ters specifically for SIMD type instructions. The splicing
of the data into separate turns reduced the number of cache
misses since the data was always read consecutive. All these
combined measures dramatically reduced the computation
time down to the final 80 ms which is approximately 5 times
faster than the input data rate.

Performance Testing
The performance of the implementation was compared

with a native C++ implementation. Both were compiled
with G++-4.4.7 which is the standard compiler for front-end
computers at CERN. Maximum compiler optimization was
enabled so the native implementation used auto vectoriza-
tion. For the conversion stage data for 131072 turns and
3564 bunches were simulated. For the other stages data for
one turn and 128000000 bunches were simulated. The result
can be seen in Table 1.

MOPAB117 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
398Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T03 Beam Diagnostics and Instrumentation



Figure 2: Output from instability detection with data from observations.

Table 1: AVX vs Native C++ Comparison

Conversion Instructions Cycles CPU time[ms]
Native 1534437270 714719743 285
AVX 793964717 279384376 151
Reduction 48.3% 60.9% 47.0%

Notch Instructions Cycles CPU time[ms]
Native 1430236599 493511370 268
AVX 145416604 143719902 100
Reduction 89.8% 70.9% 62.6%

IQ Instructions Cycles CPU time[ms]
Native 4158509240 1361599075 559
AVX 2003146566 1233847315 515
Reduction 51.8% 9.4% 7.9%

Amplitude Instructions Cycles CPU time[ms]
Native 2845177110 4487822502 1692
AVX 225351692 185194294 128
Reduction 92.1% 95.9% 92.4%

The conversion, notch and amplitude stages show a sig-
nificant reduction of computation time. The improvement
of the IQ stage is less significant. A probable cause is that
the I component is obtained by a delay, implemented with a
memcpy.

RESULTS AND CONCLUSION
It was demonstrated, that the implementation can handle

the full data throughput from the ADTObsBoxes 5 times
fast than required, providing a true online, bunch by bunch
transverse instability detection system for the LHC accel-
erator. The detection algorithm was tuned using real data
samples from the machine and will be put into operation
after the winter technical stop 2016/2017. The detection

system sends a trigger to all observation systems connected
to the LIST [2] along the LHC machine in case a growing
transverse activity is detected, together with detailed infor-
mation about which bunches are unstable, at the moment
the instability is detected. This greatly improves the quality
and turnaround of instability analysis, for example during
scrubbing, or other special runs.

REFERENCES
[1] M. Arruat et al., “Front-end Software Architecture”, in

Proc. ICALEPCS’07, Knoxville, Tennessee, USA, Oct. 2007,
paper WOPA04, pp. 301–312.

[2] T. Włostowski, G. Daniluk, M. Lipinski, J. Serrano, F.
Vaga, “Trigger and RF distribution using White Rabbit”, in
Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015, paper
WEC3O01, pp. 619–623.

[3] M. Gasior, “Faraday cup award: high sensitivity tune mea-
surement using Direct Diode Detection”, in Proc. BIW’12,
Newport News, VA USA, April 2012, paper MOAP02.

[4] T. Levens, K. Łasocha, T. Lefevre, “Recent developments for
instability monitoring at the LHC”, in IBIC’16, Barcelona,
Spain, Sept. 2016, paper THAL02, pp. 852–855.

[5] “How Intel® AVX2 improves performance on server
applications”, https://software.intel.com/en-us/
articles/how-intel-avx2-improves-performance-
on-server-applications

[6] A.V. Oppenheim, R. W. Schafer, and R. John, “Discrete
Hilbert Transforms”, in Discrete-Time Signal Processing –
SE. New Jersey, USA: Prentice Hall, 1999, pp. 775–801.

[7] G. Kotzian, “Transverse feedback parameter extraction from
excitation data”, presented at IPAC’17, Copenhagen, Den-
mark, May 2017, paper TUPIK094, this conference.

[8] M. Ojeda et al., “Processing high-bandwidth bunch-by-
bunch observation data from the RF and transverse damper
systemsd of the LHC”, in ICALEPCS’15, Melbourne, Aus-
tralia, Oct. 2015, paper WEPGF062, pp. 841–844.

Proceedings of IPAC2017, Copenhagen, Denmark MOPAB117

06 Beam Instrumentation, Controls, Feedback and Operational Aspects
T03 Beam Diagnostics and Instrumentation

ISBN 978-3-95450-182-3
399 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


