Paper | Title | Other Keywords | Page |
---|---|---|---|
MOBA03 | Sensitivity of Niobium Superconducting RF Cavities to Magnetic Field | cavity, vacuum, niobium, SRF | 34 |
|
|||
One important characteristic of nitrogen-doped cavities is their very high sensitivity to increased residual surface resistance from trapped ambient magnetic flux. We have performed a systematic study on the losses by trapped flux, and their dependence on the mean-free-path (MFP) of the niobium RF penetration layer. Cavities with a wide range of MFP values were tested in uniform ambient magnetic fields to measure trapped magnetic flux and resulting increase in RF surface resistance. MFP values were determined from surface impedance measurements. It was found that larger mean free paths lead to lower sensitivity to trapped magnetic flux. | |||
![]() |
Slides MOBA03 [1.817 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB004 | Understanding the Field Dependence of the Surface Resistance in Nitrogen-Doped Cavities | simulation, radio-frequency, cavity, vacuum | 74 |
|
|||
Funding: NSF Grant PHYS-1416318 An important limiting factor in the performance of superconducting radio frequency (SRF) cavities in medium and high field gradients is the intrinsic quality factor and, thus, the surface resistance of the cavity. The exact dependence of the surface resistance on the magnitude of the RF field is not well understood. We present an analysis of experimental data of LT1-3 and LT1-4, 1.3 GHz single-cell nitrogen-doped cavities prepared and tested at Cornell. Most interestingly, the cavities display anti-Q slopes in the medium-field region (i.e. Rs decreases with increasing accelerating field). We extract the temperature dependent surface resistances of the cavities, analyze field dependencies, and compare with theoretical predictions. These comparisons and analyses provide new insights into the field dependence of the surface resistance and improve our understanding of the mechanisms behind the effect. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
MOPB030 | Measurements of Thermal Impedance on Superconducting Radiofrequency Cavities | cavity, SRF, niobium, operation | 154 |
|
|||
Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The thermal impedance of niobium plays an important role in the stability of the superconducting radio frequency cavities used in particle accelerators. During the operation of SRF cavities, the RF power dissipated on the inner surface of the cavities and the heat transport to the helium bath depend on the thermal conductivity of niobium and the Kapitza conductance of the interface between the niobium and superfluid helium. Here, we present the results of measurements done on samples as well as on SRF cavities made of both ingot and fine-grain Nb to explore the effect of the surface preparation and crystal structure on the thermal impedance. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB052 | HTS Coatings for Impedance Reduction of Beam-Induced RF Image Currents in the FCC | radiation, collider, dipole, injection | 695 |
|
|||
The FCC-hh presently under study at CERN will make use of 16 T superconducting dipoles for achieving 100 TeV p-p center-of-mass collision energy in a 100 km ring collider. A copper coated beam screen, like in the LHC, is envisaged to shield the 1.9 K dipole cold bores from the 28 W/m/beam of synchrotron radiation. Operating temperature should be in the 50 K range, as best compromise temperature in order to minimize the wall-plug power consumption of the cryogenic system. However, preliminary studies indicate that copper at 50 K might not provide low enough beam coupling impedance in the FCC-hh. It has then been proposed to reduce the beam impedance by a thin layer of a High-Temperature Superconductor (HTS), which will thus effectively shield the beam-induced RF image currents. Purpose of this paper is to define the basic requirements for an HTS film in the RF field induced by beam image currents and exposed to a high magnetic field, and to identify the best candidate materials and coating processes. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB060 | Measurements of RF Properties of Thin Film Nb3Sn Superconducting Multilayers Using a Calorimetric Technique | SRF, cavity, radio-frequency, vacuum | 720 |
|
|||
Funding: DOE Contract No. DE-AC05-06OR23177 DOE Grant No. DE-SC0010081 Results of RF tests of Nb3Sn thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB071 | Development and Testing of a 325 MHz beta0 = 0.82 Single-Spoke Cavity | cavity, linac, vacuum, cryogenics | 744 |
|
|||
A single-spoke cavity operating at 325 MHz with geometric beta of 0.82 has been developed and tested. Initial results* showed high levels of field emission which limited the achievable gradient. Several rounds of helium processing significantly improved the cavity performance. Here we discuss the development process and report on the improved results.
*C.S. Hopper, HyeKyoung Park, and J.R. Delayen, “Cryogenic Testing of High-Velocity Spoke Cavities,” Proc. of the 27th Linear Accelerator Conference, Geneva, Switzerland, TUPP109, (2014). |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
TUPB089 | High-Precision Measurements of the Quality Factor of Superconducting Cavities at the FREIA Laboratory | cavity, coupling, network, SRF | 810 |
|
|||
In this paper we propose a high-precision method of measuring Q0 of SRF cavities. A common way to study the performance of an SRF cavity is to build an oscillator around it that is referred to as a self-exciting loop. In the standard approach, by tuning the loop phase for a maximum field level in the cavity and measuring forward and reflected waves, one finds the cavity coupling. Then, performing a time-decay measurement and finding the total quality factor, one gets Q0. However, this approach suffers from a deficiency originating from a single data-point measurement of the reflection coefficient. In our method by varying the loop phase shift, one obtains amplitudes of the reflection coefficient of the cavity as a function of its phases. The complex reflection coefficient describes a perfect circle in polar coordinates. Fitting the overdetermined set of data to that circle allows more accurate calculation of Q0 via the least-squares procedure. The method has been tested at the FREIA Laboratory on two cavities from IPN Orsay: a single spoke and a prototype ESS double spoke. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB002 | Second Harmonic Cavity Design for Synchrotron Radiation Energy Compensator in eRHIC Project | cavity, HOM, linac, radiation | 1052 |
|
|||
Funding: DOE eRHIC project requires construction of a FFAG ring to accelerate electrons and connect to the existing ion ring of Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. This new ring will have the same radius as the RHIC ring. Synchrotron radiation lost in the electron ring should be compensated by a CW superconducting radio frequency (SRF) cavity. Here we propose an 845 MHz single cell harmonic cavity. This cavity will experience a high average current (∼0.7 A) passing through it. With this consideration, this cavity design requires optimization to reduce higher order mode power. On the other hand, the cavity will operate at relatively high gradient up to 18 MV/m. Current design requires fundamental couplers to handle 400 kW forward RF power and HOM couplers to extract 2.5 kW HOM power. This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB007 | A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II | HOM, cavity, factory, resonance | 1073 |
|
|||
Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 The Linac Coherent Light Source (LCLS) at SLAC, the world's first hard X-ray FEL, is being upgraded to the LCLS-II. The major new feature will be the installation of 35 cryomodules (CMs) of TESLA-type, superconducting accelerating structures. It is envisioned that LCLS-II will eventually be able to deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz. At a cavity temperature of 2K, any heat generated (even on the level of a few watts) is expensive to remove. In the last linac of LCLS-II, L3–-where the peak current is highest–-the power radiated by the bunch in the CMs is estimated at 14 W (charge 300 pC option, rep rate 1 MHz). But this calculation ignores resonances that can be excited between the bunch frequency and higher order mode (HOM) frequencies in the CMs, which in principle can greatly increase this number. In this report we develop a theory of resonant build up. Then, using 500 numerically obtained modes over the frequency range 3–5 GHz, we estimate the probability of significant resonant build up in L3 of LCLS-II. The effects of small random bunch phase and charge errors will also be addressed. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB013 | A Novel Design and Development of 650 MHz, β=0.61, 5-Cell SRF Cavity for High Intensity Proton Linac | cavity, niobium, electron, HOM | 1088 |
|
|||
Funding: DAE, Govt. of India DAE laboratories in India are involved in R&D activities on SRF cavity technology for the proposed high intensity proton linacs for ISNS/IADS and also FERMILAB PIP-II program under IIFC. VECC is responsible for design, analysis and development of a 650 MHz, β=0.61, 5-cell elliptical cavity. This paper describes the novel design of the cavity, with different aperture and wall angle, having better field flatness and mechanical stability, reliable surface processing facility and less beam loss. The cavity geometry has been optimized to get acceptable values of field enhancement factors, R/Q, Geometric factor, cell-to-cell coupling etc. The effective impedance of transverse and longitudinal HOMs are low enough to get rid of HOM damper for low beam current. 2-D analysis shows no possibility of multipacting. However, 3-D analysis using CST Particle Studio code confirms its presence and it can be suppressed by introducing a small convexity in the equator region. Two niobium half cells and beam pipes for the single cell cavity have been fabricated. Measurement and RF characterisation of half cells, prototype 1-cell and 5-cell and also 1-cell niobium cavities have been carried out. email:ssom@vecc.gov.in |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB044 | A Superconducting RF Deflecting Cavity for the ARIEL e-Linac Separator | cavity, HOM, linac, electron | 1187 |
|
|||
A 650 MHz SRF deflecting mode cavity has been designed for the ARIEL e-Linac to separate interleaved beams heading towards either Rare Ion Beam production or a recirculation loop for energy recovery, allowing the e-Linac to provide beam delivery to multiple users simultaneously. The cavity geometry has been optimized for the ARIEL specifications, resulting in a very compact cavity with high shunt impedance and low dissipated power. Analyses have been performed on the susceptibility to multipacting, input coupling considering beam loading and microphonics, and extensive studies into the damping of transverse and longitudinal higher order modes. The pressure sensitivity, frequency tuning, and thermal behaviour have also been studied using ANSYS. The cavity design resulting from these considerations will be discussed here. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB048 | Design of a Compact Superconducting Crab-Cavity for LHC Using Nb-on-Cu-Coating Technique | cavity, cathode, HOM, SRF | 1205 |
|
|||
The design of a compact superconducting crab-cavity for LHC using Nb-on-Cu-coating technique is presented. The cavity shape is based on the ridged waveguide resonator with wide open apertures to provide access to the inner surface of the cavity for coating. It also provides natural damping for HOMs and rather low longitudinal and transverse impedances. The results of the cavity shape optimization taking into account RF performance, coating, and thermo-mechanical considerations as well as the design and fabrication plans of the first prototype for coating and cold tests are presented. | |||
![]() |
Poster THPB048 [0.534 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB053 | Electromagnetic Design of 400 MHz RF-Dipole Crabbing Cavity for LHC High Luminosity Upgrade | cavity, HOM, dipole, luminosity | 1222 |
|
|||
The beam crabbing proposed for the LHC High Luminosity Upgrade requires two crabbing systems operating in both horizontal and vertical planes. In addition, the crabbing cavity design needs to meet strict dimensional constraints and functional specifications of the cavities. This paper presents the detailed electromagnetic design including em properties, multipole analysis, multipacting levels of the 400 MHz rf-dipole crabbing cavity. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB072 | Higher Order Mode Damping in a Higher Harmonic Cavity for the Advanced Photon Source Upgrade | HOM, cavity, dipole, simulation | 1293 |
|
|||
Funding: Results in this report are derived from work performed at Argonne National Laboratory. Argonne is operated by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357. A superconducting higher-harmonic cavity (HHC) is under development for the Advanced Photon Source Upgrade based on a Multi-Bend Achromat lattice. This cavity will be used to improve the Touschek lifetime and the single bunch current limit by lengthening the beam. A single-cell 1.4 GHz (the 4th harmonic of the main RF) cavity is designed based on the TESLA shape. Two adjustable fundamental mode power couplers are included. The harmonic cavity voltage of 0.84 MV will be driven by the 200 mA beam with a bunch length of >50 ps RMS. Higher-order modes (HOM) must be extracted and damped. This will be done with two silicon carbide beamline HOM absorbers to minimize heating of RF structures such as the superconducting cavity and/or couplers and suppress possible beam instabilities. The HHC system is designed such that 1) most monopole and dipole HOMs are extracted along the beam pipes and damped in the ‘beamline’ silicon carbide absorbers and 2) a few HOMs, resulting from introduction of the couplers, are extracted through the coupler and dissipated in a room temperature water-cooled load. We will present time and frequency domain simulation results and discuss damping of HOMs. |
|||
![]() |
Poster THPB072 [2.187 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB074 | High Current eRHIC Cavity Design and HOM Damping Scheme | cavity, HOM, damping, linac | 1297 |
|
|||
Funding: This work is supported by LDRD program of Brookhaven Science Associates. A 422 MHz cavity was designed for high current FFAG lattice ERLs for high luminosity eRHIC. The cavity was optimized to be able to propagate all the HOMs out of the cavity for high BBU threshold current and low HOM power (loss factor). Coupling the full spectrum (up to 30 GHz) HOMs out of the cavity and delivering the HOM power (up to 8 kW) out of the cryomodule is a challenge. A damping scheme with 6 coaxial line HOM couplers for low frequency HOMs and 3 waveguide HOM dampers for high frequency (so that the waveguide is small) is proposed to damp the full spectrum and high power HOMs. This paper will present the cavity design and HOM damping scheme. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB079 | Improved Capacitive Coupling Type RF Power Couplers for a Cryomodule With Two 9-Cell Cavities | coupling, cryomodule, SRF, simulation | 1313 |
|
|||
Funding: Work supported by Major State Basic Research Development Program of China(Grant No. 2011CB808302 and 2011CB808304) A capacitive coupling RF power coupler was used for the DC-SRF photoinjector at Peking University. Recently, improved capacitive coupling power couplers, which will be used for a new cryomodule with two 9-cell cavities have been designed and fabricated. The main modifications include enlarging the supporting rods of inner conductors in order to increase heat conduction, moving the bellows from the quarter-wave transformer to the 50 Ω coaxial line to avoid the mismatch during Qext adjusting. Two modified power coupler have already finished RF conditioning up to 10kW, TW, duty factor 30%. In this paper, detailed design based on multi-physics analysis and the conditioning of this improved capacitive coupling RF Power coupler will be presented. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB087 | Design and Simulation of High Power Input Coupler for C-ADS Linac 5-Cell Elliptical Cavities | simulation, cavity, electron, RF-structure | 1343 |
|
|||
Two 650 MHz elliptical cavity sections (elliptical 063, elliptical 082) are chosen to accelerate medium energy protons for China Accelerator Driven sub-critical System (C-ADS) linac. For each 5-cell cavity, RF power up to 150 kW in CW mode is required to be fed by a fundamental power coupler (FPC). A coaxial type coupler is designed to meet the power and RF coupling requirements. This paper presents the RF design, thermal analysis and multipacting simulations of the coupler for C-ADS 5-cell elliptical cavities. | |||
![]() |
Poster THPB087 [0.593 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||
THPB100 | Nb Coatings on Bellows Used in SRF Accelerators | SRF, cavity, ion, plasma | 1379 |
|
|||
Funding: This research is supported by the US DOE via SBIR grant: DE-SC0007678 Alameda Applied Sciences Corporation (AASC) is developing bellows with the strength and flexibility of stainless steel and the low surface impedance of a superconductor. Such unique bellows would enable alignment of SRF cavity sections with greatly reduced RF losses. To that end, we grow Nb thin films via Coaxial Energetic Deposition (CED) from a cathodic arc plasma. Films of Nb were grown on stainless steel bellows, with and without an intermediate layer of Cu deposited via the same technique, to produce a working bellows with a well adhered superconducting inner layer. The Nb coated bellows have undergone tests conducted by our collaborators to evaluate their RF performance. |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | ||